HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Retinal Vessel Segmentation
Retinal Vessel Segmentation On Chase_Db1
Retinal Vessel Segmentation On Chase_Db1
Metriken
AUC
Acc
F1 score
MCC
Sensitivity
mIOU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC
Acc
F1 score
MCC
Sensitivity
mIOU
Paper Title
Repository
FSG-Net
0.9937
0.9751
0.8101
0.7989
0.8599
0.8268
Full-scale Representation Guided Network for Retinal Vessel Segmentation
IterNet
0.9851
-
0.8073
-
-
-
IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks
MERIT-GCASCADE
-
-
0.8267
-
0.8493
0.7050
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
LadderNet
0.9839
-
0.8031
-
-
-
LadderNet: Multi-path networks based on U-Net for medical image segmentation
U-Net ASPP
-
-
-
-
-
0.8959
Resolution-Aware Design of Atrous Rates for Semantic Segmentation Networks
-
SA-UNet
0.9905
-
0.8153
-
-
-
SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation
Residual U-Net
0.9779
-
0.7800
-
-
-
Road Extraction by Deep Residual U-Net
VGN
0.9830
-
0.8034
-
-
-
Deep Vessel Segmentation By Learning Graphical Connectivity
DUNet
0.9804
-
0.7883
-
-
-
DUNet: A deformable network for retinal vessel segmentation
-
R2U-Net
0.9815
-
0.7928
-
-
-
Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation
RV-GAN
0.9914
-
0.8957
-
0.8199
0.9705
RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs using a Novel Multi-scale Generative Adversarial Network
Study Group Learning
0.9920
-
0.8271
-
0.8690
-
Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels
U-Net
0.9772
-
-
-
-
-
U-Net: Convolutional Networks for Biomedical Image Segmentation
PVT-GCASCADE
-
-
0.8251
-
0.8584
0.7024
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
FR-UNet
0.9913
-
0.8151
-
0.8798
-
Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation
0 of 15 row(s) selected.
Previous
Next