HyperAI

Retinal Vessel Segmentation On Chase_Db1

Metriken

AUC
Acc
F1 score
MCC
Sensitivity
mIOU

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAUCAccF1 scoreMCCSensitivitymIOU
full-scale-representation-guided-network-for0.99370.97510.81010.79890.85990.8268
iternet-retinal-image-segmentation-utilizing0.9851-0.8073---
g-cascade-efficient-cascaded-graph--0.8267-0.84930.7050
laddernet-multi-path-networks-based-on-u-net0.9839-0.8031---
resolution-aware-design-of-atrous-rates-for-----0.8959
sa-unet-spatial-attention-u-net-for-retinal0.9905-0.8153---
road-extraction-by-deep-residual-u-net0.9779-0.7800---
deep-vessel-segmentation-by-learning0.9830-0.8034---
dunet-a-deformable-network-for-retinal-vessel0.9804-0.7883---
recurrent-residual-convolutional-neural0.9815-0.7928---
rv-gan-retinal-vessel-segmentation-from0.9914-0.8957-0.81990.9705
study-group-learning-improving-retinal-vessel0.9920-0.8271-0.8690-
u-net-convolutional-networks-for-biomedical0.9772-----
g-cascade-efficient-cascaded-graph--0.8251-0.85840.7024
full-resolution-network-and-dual-threshold0.9913-0.8151-0.8798-