HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Recommendation Systems
Collaborative Filtering On Movielens 100K
Collaborative Filtering On Movielens 100K
Metriken
Precision
RMSE (u1 Splits)
Recall
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Precision
RMSE (u1 Splits)
Recall
Paper Title
Repository
GHRS
0.771
0.887
0.799
GHRS: Graph-based Hybrid Recommendation System with Application to Movie Recommendation
Self-Supervised Exchangeable Model
-
0.91
-
Deep Models of Interactions Across Sets
IGMC
-
0.905
-
Inductive Matrix Completion Based on Graph Neural Networks
GMC
-
0.996
-
Matrix Completion on Graphs
GLocal-K
-
0.8889
-
GLocal-K: Global and Local Kernels for Recommender Systems
sRGCNN
-
0.929
-
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks
FedGNN
-
-
-
FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation
-
GraphRec + Feat
-
0.897
-
Attribute-aware non-linear co-embeddings of graph features
GC-MC
-
0.905
-
Graph Convolutional Matrix Completion
Factorized EAE
-
0.920
-
Deep Models of Interactions Across Sets
GraphRec
-
0.904
-
Attribute-aware non-linear co-embeddings of graph features
GRALS
-
0.945
-
Collaborative Filtering with Graph Information: Consistency and Scalable Methods
FedPerGNN
-
-
-
A federated graph neural network framework for privacy-preserving personalization
GRAEM / KPMF
-
0.9174
-
Scalable Probabilistic Matrix Factorization with Graph-Based Priors
GC-MC
-
0.910
-
Graph Convolutional Matrix Completion
MG-GAT
-
0.890
-
Interpretable Recommender System With Heterogeneous Information: A Geometric Deep Learning Perspective
WMLFF
-
0.928
-
Weighted Multi-Level Feature Factorization for App ads CTR and installation prediction
0 of 17 row(s) selected.
Previous
Next