HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Empfehlungssysteme
Collaborative Filtering On Movielens 100K
Collaborative Filtering On Movielens 100K
Metriken
Precision
RMSE (u1 Splits)
Recall
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Precision
RMSE (u1 Splits)
Recall
Paper Title
Repository
GHRS
0.771
0.887
0.799
GHRS: Graph-based Hybrid Recommendation System with Application to Movie Recommendation
-
Self-Supervised Exchangeable Model
-
0.91
-
Deep Models of Interactions Across Sets
-
IGMC
-
0.905
-
Inductive Matrix Completion Based on Graph Neural Networks
-
GMC
-
0.996
-
Matrix Completion on Graphs
-
GLocal-K
-
0.8889
-
GLocal-K: Global and Local Kernels for Recommender Systems
-
sRGCNN
-
0.929
-
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks
-
FedGNN
-
-
-
FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation
-
GraphRec + Feat
-
0.897
-
Attribute-aware non-linear co-embeddings of graph features
GC-MC
-
0.905
-
Graph Convolutional Matrix Completion
-
Factorized EAE
-
0.920
-
Deep Models of Interactions Across Sets
-
GraphRec
-
0.904
-
Attribute-aware non-linear co-embeddings of graph features
GRALS
-
0.945
-
Collaborative Filtering with Graph Information: Consistency and Scalable Methods
FedPerGNN
-
-
-
A federated graph neural network framework for privacy-preserving personalization
GRAEM / KPMF
-
0.9174
-
Scalable Probabilistic Matrix Factorization with Graph-Based Priors
-
GC-MC
-
0.910
-
Graph Convolutional Matrix Completion
-
MG-GAT
-
0.890
-
Interpretable Recommender System With Heterogeneous Information: A Geometric Deep Learning Perspective
WMLFF
-
0.928
-
Weighted Multi-Level Feature Factorization for App ads CTR and installation prediction
-
0 of 17 row(s) selected.
Previous
Next
Collaborative Filtering On Movielens 100K | SOTA | HyperAI