HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Echtzeit-Semantische-Segmentierung
Real Time Semantic Segmentation On Cityscapes
Real Time Semantic Segmentation On Cityscapes
Metriken
Frame (fps)
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Frame (fps)
mIoU
Paper Title
Repository
STDC2-75
97.0(1080Ti)
76.8%
Rethinking BiSeNet For Real-time Semantic Segmentation
-
Template-Based-NAS-arch0
19
67.7%
Template-Based Automatic Search of Compact Semantic Segmentation Architectures
-
DeepLab
0.25
63.1%
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
-
EDANet
108.7 (1080Ti)
67.3
Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation
-
DDRNet-23-slim
101.6(2080Ti)
77.4%
Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes
-
U-HarDNet-70
-
-
HarDNet: A Low Memory Traffic Network
-
FasterSeg
163.9
71.5%
-
-
ICNet
30.3
70.6%
ICNet for Real-Time Semantic Segmentation on High-Resolution Images
-
PP-LiteSeg-B1
195.3(1080Ti)
73.9%
PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model
-
PP-LiteSeg-B2
102.6(1080Ti)
77.5%
PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model
-
ShelfNet18
59.2
74.8%
ShelfNet for Fast Semantic Segmentation
-
PIDNet-L
31.1(3090)
80.6%
PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers
-
ESNet
63
70.7%
ESNet: An Efficient Symmetric Network for Real-time Semantic Segmentation
-
ENet
76.9
58.3%
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
-
ENet + Lovász-Softmax
76.9
63.1%
The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks
-
TD4-BISE18
47.6 (Titan X)
74.9%
Temporally Distributed Networks for Fast Video Semantic Segmentation
-
BiSeNet V2
156
72.6%
BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation
-
RegSeg (no ImageNet pretraining)
30
78.3%
Rethinking Dilated Convolution for Real-time Semantic Segmentation
-
PP-LiteSeg-T1
273.6(1080Ti)
72.0%
PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model
-
HyperSeg-M
36.9
75.8%
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
-
0 of 39 row(s) selected.
Previous
Next
Real Time Semantic Segmentation On Cityscapes | SOTA | HyperAI