HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Fragebeantwortung
Question Answering On Squad20 Dev
Question Answering On Squad20 Dev
Metriken
EM
F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
EM
F1
Paper Title
Repository
ALBERT base
76.1
79.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
RoBERTa (no data aug)
86.5
89.4
RoBERTa: A Robustly Optimized BERT Pretraining Approach
ALBERT large
79.0
82.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
XLNet (single model)
87.9
90.6
XLNet: Generalized Autoregressive Pretraining for Language Understanding
RMR + ELMo (Model-III)
72.3
74.8
Read + Verify: Machine Reading Comprehension with Unanswerable Questions
-
SemBERT large
80.9
83.6
Semantics-aware BERT for Language Understanding
SpanBERT
-
86.8
SpanBERT: Improving Pre-training by Representing and Predicting Spans
SG-Net
85.1
87.9
SG-Net: Syntax-Guided Machine Reading Comprehension
TinyBERT-6 67M
69.9
73.4
TinyBERT: Distilling BERT for Natural Language Understanding
XLNet+DSC
87.65
89.51
Dice Loss for Data-imbalanced NLP Tasks
ALBERT xlarge
83.1
85.9
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
U-Net
70.3
74.0
U-Net: Machine Reading Comprehension with Unanswerable Questions
ALBERT xxlarge
85.1
88.1
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
0 of 13 row(s) selected.
Previous
Next