Question Answering On Squad20 Dev
Metriken
EM
F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | EM | F1 |
---|---|---|
albert-a-lite-bert-for-self-supervised | 76.1 | 79.1 |
roberta-a-robustly-optimized-bert-pretraining | 86.5 | 89.4 |
albert-a-lite-bert-for-self-supervised | 79.0 | 82.1 |
xlnet-generalized-autoregressive-pretraining | 87.9 | 90.6 |
read-verify-machine-reading-comprehension | 72.3 | 74.8 |
semantics-aware-bert-for-language | 80.9 | 83.6 |
spanbert-improving-pre-training-by | - | 86.8 |
sg-net-syntax-guided-machine-reading | 85.1 | 87.9 |
190910351 | 69.9 | 73.4 |
dice-loss-for-data-imbalanced-nlp-tasks | 87.65 | 89.51 |
albert-a-lite-bert-for-self-supervised | 83.1 | 85.9 |
u-net-machine-reading-comprehension-with | 70.3 | 74.0 |
albert-a-lite-bert-for-self-supervised | 85.1 | 88.1 |