Question Answering On Squad20
Metriken
EM
F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | EM | F1 |
---|---|---|
Modell 1 | 80.208 | 83.149 |
Modell 2 | 79.971 | 83.184 |
Modell 3 | 80.038 | 82.796 |
Modell 4 | 80.117 | 83.189 |
Modell 5 | 82.803 | 85.863 |
Modell 6 | 74.769 | 77.706 |
Modell 7 | 89.021 | 91.765 |
albert-a-lite-bert-for-self-supervised | 88.107 | 90.902 |
Modell 9 | 80.377 | 83.262 |
Modell 10 | 86.436 | 89.086 |
Modell 11 | 75.344 | 78.381 |
Modell 12 | 84.800 | 87.864 |
Modell 13 | 73.742 | 76.858 |
Modell 14 | 80.388 | 82.908 |
Modell 15 | 78.933 | 81.863 |
Modell 16 | 78.052 | 81.174 |
Modell 17 | 90.002 | 92.497 |
Modell 18 | 84.924 | 88.204 |
ensemble-albert-on-squad-2-0 | - | 90.123 |
Modell 20 | 79.181 | 82.259 |
Modell 21 | 90.487 | 92.894 |
Modell 22 | 85.838 | 88.921 |
Modell 23 | 82.995 | 86.035 |
Modell 24 | 84.642 | 88.000 |
Modell 25 | 89.551 | 92.366 |
Modell 26 | 77.003 | 80.209 |
Modell 27 | 89.562 | 92.226 |
Modell 28 | 87.847 | 90.532 |
Modell 29 | 86.448 | 89.586 |
Modell 30 | 87.802 | 90.872 |
deep-contextualized-word-representations | 63.372 | 66.251 |
Modell 32 | 84.642 | 88.000 |
Modell 33 | 90.600 | 92.899 |
Modell 34 | 79.948 | 83.023 |
Modell 35 | 78.357 | 81.500 |
Modell 36 | 90.679 | 92.948 |
Modell 37 | 90.194 | 92.594 |
Modell 38 | 80.411 | 83.457 |
Modell 39 | 88.107 | 90.902 |
Modell 40 | 82.126 | 84.820 |
Modell 41 | 88.614 | 91.303 |
Modell 42 | 87.429 | 90.163 |
Modell 43 | 90.284 | 92.691 |
Modell 44 | 88.050 | 90.645 |
Modell 45 | 82.024 | 84.854 |
read-verify-machine-reading-comprehension | 71.767 | 74.295 |
Modell 47 | 89.461 | 92.134 |
Modell 48 | 87.949 | 90.818 |
sg-net-syntax-guided-machine-reading | 88.174 | 90.702 |
deberta-decoding-enhanced-bert-with | 88.0 | 90.7 |
Modell 51 | 58.508 | 62.045 |
Modell 52 | 59.332 | 62.305 |
Modell 53 | 82.713 | 85.584 |
Modell 54 | 88.637 | 91.230 |
Modell 55 | 79.779 | 82.912 |
Modell 56 | 76.055 | 79.329 |
Modell 57 | 90.420 | 92.799 |
Modell 58 | 83.142 | 85.873 |
Modell 59 | 81.979 | 84.846 |
Modell 60 | 72.884 | 76.217 |
Modell 61 | 85.003 | 87.833 |
Modell 62 | 88.998 | 91.635 |
Modell 63 | 81.178 | 84.251 |
Modell 64 | 78.594 | 81.445 |
Modell 65 | 63.372 | 66.251 |
xlnet-generalized-autoregressive-pretraining | 87.926 | 90.689 |
Modell 67 | 69.262 | 72.642 |
Modell 68 | 65.651 | 68.866 |
Modell 69 | 71.666 | 75.457 |
Modell 70 | 88.197 | 90.830 |
Modell 71 | 84.721 | 87.117 |
Modell 72 | 90.115 | 92.580 |
Modell 73 | 72.884 | 76.217 |
stochastic-answer-networks-for-machine | 68.653 | 71.439 |
Modell 75 | 76.055 | 79.329 |
semantics-aware-bert-for-language | 84.800 | 87.864 |
Modell 77 | 87.847 | 91.265 |
Modell 78 | 85.229 | 87.926 |
Modell 79 | 88.186 | 90.939 |
Modell 80 | 88.050 | 91.036 |
Modell 81 | 86.346 | 89.133 |
Modell 82 | 85.240 | 87.901 |
Modell 83 | 79.632 | 82.852 |
Modell 84 | 80.715 | 83.827 |
Modell 85 | 88.592 | 90.859 |
Modell 86 | 80.456 | 83.509 |
semantics-aware-bert-for-language | 86.166 | 88.886 |
Modell 88 | 84.123 | 87.013 |
Modell 89 | 79.971 | 83.266 |
Modell 90 | 69.476 | 72.857 |
Modell 91 | 77.262 | 80.258 |
Modell 92 | 84.620 | 87.625 |
Modell 93 | 84.721 | 87.117 |
Modell 94 | 86.820 | 89.795 |
Modell 95 | 89.325 | 91.994 |
Modell 96 | 80.343 | 83.243 |
Modell 97 | 84.202 | 86.767 |
Modell 98 | 0.068 | 3.971 |
Modell 99 | 84.292 | 86.967 |
Modell 100 | 78.481 | 81.531 |
Modell 101 | 86.651 | 89.595 |
Modell 102 | 85.173 | 88.425 |
Modell 103 | 80.354 | 83.329 |
Modell 104 | 86.166 | 88.886 |
Modell 105 | 89.348 | 91.985 |
Modell 106 | 89.224 | 91.853 |
Modell 107 | 68.213 | 70.878 |
semantics-aware-bert-for-language | 86.166 | 88.886 |
Modell 109 | 83.819 | 86.669 |
Modell 110 | 84.123 | 87.013 |
Modell 111 | 40.397 | 43.213 |
Modell 112 | 84.834 | 87.644 |
Modell 113 | 80.140 | 82.962 |
Modell 114 | 56.545 | 59.546 |
Modell 115 | 88.716 | 91.365 |
Modell 116 | 90.442 | 92.877 |
Modell 117 | 83.457 | 86.122 |
Modell 118 | 85.884 | 88.621 |
Modell 119 | 89.449 | 92.118 |
Modell 120 | 48.883 | 48.883 |
Modell 121 | 75.073 | 77.805 |
Modell 122 | 90.724 | 93.011 |
Modell 123 | 85.872 | 88.793 |
Modell 124 | 88.524 | 91.256 |
Modell 125 | 87.147 | 89.474 |
Modell 126 | 78.357 | 81.500 |
Modell 127 | 67.897 | 70.884 |
Modell 128 | 63.327 | 66.633 |
Modell 129 | 88.107 | 90.902 |
Modell 130 | 83.751 | 86.594 |
Modell 131 | 90.386 | 92.777 |
sg-net-syntax-guided-machine-reading | 87.238 | 90.071 |
Modell 133 | 83.051 | 85.737 |
Modell 134 | 74.272 | 77.052 |
Modell 135 | 90.871 | 93.183 |
Modell 136 | 76.563 | 79.776 |
Modell 137 | 88.231 | 90.713 |
Modell 138 | 78.650 | 81.497 |
Modell 139 | 68.213 | 70.878 |
Modell 140 | 86.730 | 89.286 |
Modell 141 | 44.945 | 47.994 |
Modell 142 | 75.457 | 78.232 |
Modell 143 | 83.536 | 86.096 |
Modell 144 | 89.449 | 92.118 |
Modell 145 | 90.454 | 92.748 |
Modell 146 | 84.642 | 88.000 |
Modell 147 | 85.827 | 89.778 |
Modell 148 | 80.241 | 83.175 |
Modell 149 | 74.791 | 77.988 |
Modell 150 | 4.830 | 5.920 |
Modell 151 | 82.374 | 85.310 |
u-net-machine-reading-comprehension-with | 71.417 | 74.869 |
Modell 153 | 80.354 | 83.329 |
Modell 154 | 78.876 | 82.524 |
Modell 155 | 74.329 | 77.396 |
Modell 156 | 85.748 | 88.709 |
pay-attention-to-mlps | - | 78.3 |
Modell 158 | 81.731 | 84.862 |
spanbert-improving-pre-training-by | 85.7 | 88.7 |
Modell 160 | 88.298 | 91.078 |
Modell 161 | 88.761 | 91.745 |
Modell 162 | 79.745 | 83.020 |
Modell 163 | 48.804 | 48.815 |
Modell 164 | 76.710 | 79.659 |
Modell 165 | 74.656 | 77.404 |
luke-deep-contextualized-entity | - | 90.2 |
Modell 167 | 85.150 | 87.715 |
stochastic-answer-networks-for-machine | 71.316 | 73.704 |
Modell 169 | 79.779 | 83.099 |
Modell 170 | 85.827 | 88.699 |
Modell 171 | 90.939 | 93.214 |
Modell 172 | 78.052 | 81.174 |
Modell 173 | 88.569 | 91.287 |
Modell 174 | 74.577 | 77.464 |
Modell 175 | 59.174 | 62.093 |
Modell 176 | 88.434 | 90.918 |
Modell 177 | 63.338 | 67.422 |
Modell 178 | 84.123 | 87.013 |
Modell 179 | 87.700 | 90.588 |
Modell 180 | 73.099 | 76.236 |
Modell 181 | 87.994 | 90.944 |
Modell 182 | 88.107 | 90.902 |
Modell 183 | 86.933 | 90.037 |
fusionnet-fusing-via-fully-aware-attention | 70.300 | 72.484 |
Modell 185 | 86.211 | 88.848 |
Modell 186 | 87.046 | 89.899 |
Modell 187 | 78.650 | 81.474 |
Modell 188 | 89.743 | 92.180 |
Modell 189 | 68.766 | 71.662 |
Modell 190 | 90.081 | 92.457 |
Modell 191 | 82.431 | 85.178 |
Modell 192 | 78.933 | 81.863 |
Modell 193 | 89.923 | 92.425 |
sg-net-syntax-guided-machine-reading | 86.211 | 88.848 |
Modell 195 | 87.193 | 89.934 |
Modell 196 | 88.851 | 91.486 |
Modell 197 | 88.603 | 91.299 |
Modell 198 | 89.528 | 92.059 |
Modell 199 | 84.202 | 86.767 |
Modell 200 | 86.673 | 89.147 |
Modell 201 | 83.040 | 85.892 |
Modell 202 | 80.896 | 83.604 |
Modell 203 | 88.107 | 91.419 |
Modell 204 | 72.670 | 75.507 |
Modell 205 | 86.594 | 89.082 |
Modell 206 | 90.521 | 92.824 |
Modell 207 | 78.933 | 81.863 |
Modell 208 | 83.142 | 85.873 |
Modell 209 | 79.993 | 83.039 |
Modell 210 | 82.882 | 86.002 |
Modell 211 | 88.073 | 91.179 |
Modell 212 | 77.262 | 80.258 |
Modell 213 | 82.577 | 85.603 |
retrospective-reader-for-machine-reading | 90.578 | 92.978 |
roberta-a-robustly-optimized-bert-pretraining | 86.820 | 89.795 |
Modell 216 | 88.874 | 91.546 |
Modell 217 | 49.695 | 49.701 |
Modell 218 | 87.994 | 90.944 |
Modell 219 | 90.059 | 92.517 |
Modell 220 | 84.823 | 87.489 |
Modell 221 | 89.133 | 91.666 |
Modell 222 | 90.420 | 92.807 |
Modell 223 | 77.262 | 80.258 |
Modell 224 | 82.126 | 84.624 |
Modell 225 | 88.592 | 91.286 |
Modell 226 | 90.126 | 92.535 |
Modell 227 | 85.703 | 88.400 |
Modell 228 | 57.707 | 62.341 |
Modell 229 | 83.469 | 86.043 |
albert-a-lite-bert-for-self-supervised | 89.731 | 92.215 |
Modell 231 | 83.525 | 86.222 |
Modell 232 | 83.119 | 85.510 |
Modell 233 | 86.572 | 89.063 |
Modell 234 | 86.572 | 89.063 |
Modell 235 | 74.385 | 77.308 |
Modell 236 | 90.002 | 92.425 |
Modell 237 | 69.476 | 72.857 |
Modell 238 | 27.217 | 29.597 |
Modell 239 | 72.072 | 75.513 |
Modell 240 | 74.791 | 77.988 |
Modell 241 | 90.860 | 93.100 |
Modell 242 | 88.355 | 91.019 |
Modell 243 | 85.850 | 88.449 |
Modell 244 | 86.098 | 89.634 |
luke-deep-contextualized-entity | 87.429 | 90.163 |
Modell 246 | 82.724 | 85.491 |
Modell 247 | 70.763 | 74.449 |
Modell 248 | 86.166 | 88.886 |
Modell 249 | 80.749 | 83.851 |
Modell 250 | 65.256 | 69.206 |
Modell 251 | 81.110 | 84.386 |
Modell 252 | 71.462 | 74.434 |
Modell 253 | 82.972 | 85.810 |
Modell 254 | 66.610 | 70.303 |
sg-net-syntax-guided-machine-reading | 85.229 | 87.926 |
Modell 256 | 68.021 | 71.583 |
Modell 257 | 89.235 | 91.900 |
Modell 258 | 87.870 | 90.823 |
Modell 259 | 73.505 | 76.424 |
Modell 260 | 85.838 | 88.921 |
retrospective-reader-for-machine-reading | 89.562 | 92.052 |
Modell 262 | 89.404 | 91.964 |
Modell 263 | 82.306 | 85.670 |
Modell 264 | 74.746 | 78.227 |
retrospective-reader-for-machine-reading | 90.115 | 92.580 |
Modell 266 | 89.235 | 91.739 |
Modell 267 | 85.838 | 88.921 |
Modell 268 | 56.545 | 59.546 |
Modell 269 | 71.699 | 74.430 |
Modell 270 | 72.072 | 75.513 |
Modell 271 | 85.082 | 87.615 |
Modell 272 | 81.573 | 84.535 |
Modell 273 | 77.319 | 80.310 |
Modell 274 | 89.325 | 91.939 |
Modell 275 | 71.293 | 74.578 |
Modell 276 | 80.591 | 83.391 |
Modell 277 | 82.961 | 86.075 |
Modell 278 | 80.422 | 83.118 |
Modell 279 | 88.998 | 91.635 |
Modell 280 | 86.403 | 89.148 |
Modell 281 | 85.872 | 88.989 |
Modell 282 | 65.719 | 69.381 |
Modell 283 | 89.777 | 92.312 |
Modell 284 | 80.005 | 83.208 |
Modell 285 | 73.302 | 76.284 |
retrospective-reader-for-machine-reading | 88.107 | 91.419 |