HyperAI

Question Answering On Squad11

Metriken

EM
F1

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameEMF1
stochastic-answer-networks-for-machine79.60886.496
Modell 271.90881.023
harvesting-and-refining-question-answer-pairs55.82765.467
Modell 468.33177.783
information-theoretic-representation77.785.8
adaptation-of-deep-bidirectional-multilingual-84.6
Modell 784.92691.932
Modell 890.62295.719
Modell 985.31491.756
phase-conductor-on-multi-layered-attentions74.40582.742
Modell 1178.66485.780
a-large-batch-optimizer-reality-check-91.58
fusionnet-fusing-via-fully-aware-attention75.96883.900
Modell 1484.40290.561
dyrex-dynamic-query-representation-for-91.01
Modell 160.0000.000
Modell 1774.12182.342
contextualized-word-representations-for75.78983.261
harvesting-and-refining-question-answer-pairs61.14571.389
memen-multi-layer-embedding-with-memory78.23485.344
Modell 2184.32891.281
end-to-end-answer-chunk-extraction-and62.49970.956
Modell 2381.00387.432
multi-perspective-context-matching-for73.76581.257
Modell 2555.82765.467
Modell 2686.45892.645
exploring-machine-reading-comprehension-with76.12583.538
Modell 2879.99686.711
stochastic-answer-networks-for-machine76.82884.396
Modell 3070.98579.939
Modell 3175.03483.405
Modell 3266.52775.787
bert-pre-training-of-deep-bidirectional87.493.2
Modell 3475.26582.769
Modell 3571.01679.835
information-theoretic-representation81.588.5
making-neural-qa-as-simple-as-possible-but70.84978.857
Modell 3869.60078.236
Modell 3959.05869.436
Modell 4076.85984.739
Modell 4172.48580.550
multi-perspective-context-matching-for70.38778.784
Modell 4385.35691.202
bert-pre-training-of-deep-bidirectional87.43393.160
textbox-2-0-a-text-generation-library-with-93.04
learning-to-compute-word-embeddings-on-the62.89772.016
Modell 4785.12591.623
Modell 4873.63981.931
simple-and-effective-multi-paragraph-reading72.13981.048
Modell 5061.14571.389
dcn-mixed-objective-and-deep-residual74.86682.806
machine-comprehension-using-match-lstm-and67.90177.022
machine-comprehension-using-match-lstm-and64.74473.743
Modell 5480.61587.311
fusionnet-fusing-via-fully-aware-attention78.97886.016
Modell 5679.19986.590
Modell 5781.79088.163
words-or-characters-fine-grained-gating-for62.44673.327
Modell 5983.42689.218
efficientqa-a-roberta-based-phrase-indexed74.983.1
Modell 6147.34156.436
Modell 620.0000.000
Modell 6380.02787.288
Modell 6452.54462.780
learning-to-compute-word-embeddings-on-the62.60471.968
Modell 6679.69286.727
deep-contextualized-word-representations81.00387.432
spanbert-improving-pre-training-by88.894.6
smarnet-teaching-machines-to-read-and71.41580.160
Modell 7075.82183.843
Modell 7189.70994.859
Modell 7282.68189.379
Modell 7379.08386.288
Modell 7471.69880.462
qanet-combining-local-convolution-with-global76.284.6
making-neural-qa-as-simple-as-possible-but68.43677.070
reasonet-learning-to-stop-reading-in-machine70.55579.364
Modell 7869.44378.358
Modell 790.0000.000
Modell 8071.89879.989
structural-embedding-of-syntactic-trees-for74.09081.761
Modell 8267.61877.151
Modell 8383.98289.796
Modell 8480.43687.021
Modell 8572.75881.001
Modell 860.0000.000
Modell 8782.48289.281
Modell 8889.64694.930
memen-multi-layer-embedding-with-memory75.37082.658
Modell 9077.23784.466
Modell 9185.94492.425
Modell 9278.08785.348
Modell 9388.91294.584
bidirectional-attention-flow-for-machine67.97477.323
Modell 9583.80490.429
Modell 9681.58088.948
Modell 9768.13277.569
Modell 9874.48982.815
Modell 9989.85694.903
Modell 10079.90186.536
Modell 10164.43973.921
Modell 10286.52192.617
Modell 10377.64684.905
Modell 10478.66485.780
Modell 10575.98983.475
reading-wikipedia-to-answer-open-domain70.73379.353
structural-embedding-of-syntactic-trees-for68.47877.971
Modell 10878.32885.682
Modell 10964.93274.594
exploring-question-understanding-and73.01081.517
Modell 11188.91294.584
Modell 11278.17185.543
Modell 11379.08386.288
Modell 11463.30673.463
Modell 1150.0006.907
bidirectional-attention-flow-for-machine73.74481.525
Modell 11778.49685.469
exploring-question-understanding-and70.60779.821
Modell 11979.03186.006
a-multi-stage-memory-augmented-neural-network79.69286.727
deep-contextualized-word-representations78.5885.833
Modell 12285.94492.425
Modell 12373.30381.754
Modell 12482.06288.947
Modell 12565.16374.555
Modell 12680.42686.912
Modell 12753.69864.036
Modell 12876.24084.599
phase-conductor-on-multi-layered-attentions73.24081.933
xlnet-generalized-autoregressive-pretraining89.89895.080
bert-pre-training-of-deep-bidirectional85.08391.835
Modell 13281.40188.122
Modell 13372.60081.011
Modell 13478.32885.682
Modell 13581.30788.909
gated-self-matching-networks-for-reading76.46184.265
Modell 13767.54476.429
Modell 13877.34284.925
dynamic-coattention-networks-for-question71.62580.383
Modell 14080.16486.721
luke-deep-contextualized-entity90.20295.379
Modell 14266.51676.349
luke-deep-contextualized-entity-95.4
reinforced-mnemonic-reader-for-machine82.28388.533
Modell 14588.65094.393
Modell 14676.46184.265
Modell 1470.0000.000
Modell 14877.84585.297
Modell 14980.72087.758
Modell 15075.22382.716
Modell 15190.20295.379
Modell 15276.77584.491
Modell 15383.46890.133
Modell 15444.21554.723
machine-comprehension-using-match-lstm-and60.47470.695
Modell 15679.08386.450
a-fully-attention-based-information-retriever67.74477.605
dynamic-coattention-networks-for-question66.23375.896
Modell 15975.92683.305
Modell 16085.43091.976
Modell 16176.14683.991
reinforced-mnemonic-reader-for-machine79.54586.654
Modell 16367.50276.786
reinforced-mnemonic-reader-for-machine70.99580.146
reasonet-learning-to-stop-reading-in-machine75.03482.552
Modell 16681.49687.557
Modell 16781.04587.999
contextualized-word-representations-for77.58384.163
reinforced-mnemonic-reader-for-machine74.26882.371
Modell 17080.66788.169
Modell 17174.08081.665
Modell 17271.37379.725
Modell 17378.40185.724
Modell 17487.46593.294
Modell 17578.65386.663
Modell 17672.59081.415
luke-deep-contextualized-entity90.2-
Modell 17812.27313.211
Modell 17974.60482.501
phase-conductor-on-multi-layered-attentions76.99684.630
Modell 18178.58085.833
structural-embedding-of-syntactic-trees-for73.72381.530
Modell 18382.84988.764
Modell 18489.89895.080
bert-pre-training-of-deep-bidirectional-91.8
ruminating-reader-reasoning-with-gated-multi70.63979.456
structural-embedding-of-syntactic-trees-for68.16377.527
Modell 18882.47189.306
memen-multi-layer-embedding-with-memory78.23485.344
Modell 19077.57384.858
learning-to-compute-word-embeddings-on-the64.08373.056
linkbert-pretraining-language-models-with87.4592.7
Modell 19378.22385.535
Modell 19488.83994.635
Modell 19577.09083.931
Modell 19684.97892.019
learned-in-translation-contextualized-word71.379.9
Modell 19879.85988.263
Modell 19982.13688.126
Modell 20086.94092.641
Modell 20179.59787.374
learning-recurrent-span-representations-for70.84978.741
simple-recurrent-units-for-highly71.480.2
Modell 20483.93090.613
Modell 20580.43686.912
Modell 20682.65088.493
Modell 20779.08386.288
dcn-mixed-objective-and-deep-residual78.85285.996
Modell 20980.48987.454
Modell 21082.44088.607
Modell 21185.33591.807
Modell 21252.53362.757
machine-comprehension-using-match-lstm-and54.50567.748