HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Fragebeantwortung
Question Answering On Drop Test
Question Answering On Drop Test
Metriken
F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
F1
Paper Title
Repository
QDGAT (ensemble)
88.38
Question Directed Graph Attention Network for Numerical Reasoning over Text
-
PaLM 2 (few-shot)
85.0
PaLM 2 Technical Report
-
GPT-3 175B (few-shot, k=32)
36.5
Language Models are Few-Shot Learners
-
GPT-4 (few-shot, k=3)
80.9
GPT-4 Technical Report
-
NeRd
81.71
Neural Symbolic Reader: Scalable Integration of Distributed and Symbolic Representations for Reading Comprehension
-
NumNet
67.97
NumNet: Machine Reading Comprehension with Numerical Reasoning
-
Orca 2-7B
60.26
Orca 2: Teaching Small Language Models How to Reason
-
GPT 3.5 (few-shot, k=3)
64.1
GPT-4 Technical Report
-
Orca 2-13B
57.97
Orca 2: Teaching Small Language Models How to Reason
-
POET
87.6
Reasoning Like Program Executors
-
BERT
32.7
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
-
BERT+Calculator (ensemble)
81.78
Giving BERT a Calculator: Finding Operations and Arguments with Reading Comprehension
-
NAQA Net
47.01
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
-
GenBERT (+ND+TD)
72.4
Injecting Numerical Reasoning Skills into Language Models
-
MTMSN Large
79.88
A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning
-
TASE-BERT
80.7
A Simple and Effective Model for Answering Multi-span Questions
-
0 of 16 row(s) selected.
Previous
Next