HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Prompt-Engineering
Prompt Engineering On Ucf101
Prompt Engineering On Ucf101
Metriken
Harmonic mean
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Harmonic mean
Paper Title
Repository
PromptKD
86.10
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
MetaPrompt
81.35
Learning Domain Invariant Prompt for Vision-Language Models
MaPLe
80.82
MaPLe: Multi-modal Prompt Learning
PromptSRC
82.74
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
HPT
83.16
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
MMRL
83.89
MMRL: Multi-Modal Representation Learning for Vision-Language Models
CoPrompt
83.07
Consistency-guided Prompt Learning for Vision-Language Models
ProMetaR
83.25
Prompt Learning via Meta-Regularization
CLIP
73.85
Learning Transferable Visual Models From Natural Language Supervision
HPT++
83.81
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
CoCoOp
77.64
Conditional Prompt Learning for Vision-Language Models
RPO
79.34
Read-only Prompt Optimization for Vision-Language Few-shot Learning
DePT
82.46
DePT: Decoupled Prompt Tuning
0 of 13 row(s) selected.
Previous
Next