HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Prompt Engineering
Prompt Engineering On Ucf101
Prompt Engineering On Ucf101
Metriken
Harmonic mean
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Harmonic mean
Paper Title
Repository
PromptKD
86.10
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
MetaPrompt
81.35
Learning Domain Invariant Prompt for Vision-Language Models
MaPLe
80.82
MaPLe: Multi-modal Prompt Learning
PromptSRC
82.74
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
HPT
83.16
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
MMRL
83.89
MMRL: Multi-Modal Representation Learning for Vision-Language Models
CoPrompt
83.07
Consistency-guided Prompt Learning for Vision-Language Models
ProMetaR
83.25
Prompt Learning via Meta-Regularization
CLIP
73.85
Learning Transferable Visual Models From Natural Language Supervision
HPT++
83.81
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
CoCoOp
77.64
Conditional Prompt Learning for Vision-Language Models
RPO
79.34
Read-only Prompt Optimization for Vision-Language Few-shot Learning
DePT
82.46
DePT: Decoupled Prompt Tuning
-
0 of 13 row(s) selected.
Previous
Next