HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Prompt Engineering
Prompt Engineering On Oxford 102 Flower
Prompt Engineering On Oxford 102 Flower
Metriken
Harmonic mean
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Harmonic mean
Paper Title
Repository
CLIP
74.83
Learning Transferable Visual Models From Natural Language Supervision
PromptSRC
85.95
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
CoPrompt
85.71
Consistency-guided Prompt Learning for Vision-Language Models
HPT
87.16
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
MetaPrompt
84.52
Learning Domain Invariant Prompt for Vision-Language Models
ProMetaR
86.70
Prompt Learning via Meta-Regularization
DePT
86.46
DePT: Decoupled Prompt Tuning
-
CoCoOp
81.71
Conditional Prompt Learning for Vision-Language Models
RPO
84.50
Read-only Prompt Optimization for Vision-Language Few-shot Learning
HPT++
85.85
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
PromptKD
90.24
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
MaPLe
82.56
MaPLe: Multi-modal Prompt Learning
MMRL
86.78
MMRL: Multi-Modal Representation Learning for Vision-Language Models
0 of 13 row(s) selected.
Previous
Next