HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Prompt Engineering
Prompt Engineering On Imagenet V2
Prompt Engineering On Imagenet V2
Metriken
Top-1 accuracy %
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top-1 accuracy %
Paper Title
Repository
CoCoOp
64.07
Conditional Prompt Learning for Vision-Language Models
MaPLe
64.07
MaPLe: Multi-modal Prompt Learning
POMP
63.8
-
-
CLIP
60.83
Learning Transferable Visual Models From Natural Language Supervision
HPT
65.25
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
MMRL
64.47
MMRL: Multi-Modal Representation Learning for Vision-Language Models
HPT++
65.31
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
PromptSRC
64.35
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
0 of 8 row(s) selected.
Previous
Next