Prompt Engineering On Imagenet S
Metriken
Top-1 accuracy %
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Top-1 accuracy % |
---|---|
hpt-hierarchically-prompting-vision-language | 49.28 |
conditional-prompt-learning-for-vision | 48.75 |
mmrl-multi-modal-representation-learning-for | 49.17 |
consistency-guided-prompt-learning-for-vision | 49.43 |
prompt-pre-training-with-twenty-thousand-1 | 49.8 |
maple-multi-modal-prompt-learning | 49.15 |
learning-transferable-visual-models-from | 46.15 |
self-regulating-prompts-foundational-model | 49.55 |
learning-hierarchical-prompt-with-structured | 49.36 |