HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Prompt-Engineering
Prompt Engineering On Imagenet S
Prompt Engineering On Imagenet S
Metriken
Top-1 accuracy %
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top-1 accuracy %
Paper Title
POMP
49.8
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
PromptSRC
49.55
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
CoPrompt
49.43
Consistency-guided Prompt Learning for Vision-Language Models
HPT
49.36
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
HPT++
49.28
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
MMRL
49.17
MMRL: Multi-Modal Representation Learning for Vision-Language Models
MaPLe
49.15
MaPLe: Multi-modal Prompt Learning
CoCoOp
48.75
Conditional Prompt Learning for Vision-Language Models
CLIP
46.15
Learning Transferable Visual Models From Natural Language Supervision
0 of 9 row(s) selected.
Previous
Next
Prompt Engineering On Imagenet S | SOTA | HyperAI