HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Prompt Engineering
Prompt Engineering On Imagenet S
Prompt Engineering On Imagenet S
Metriken
Top-1 accuracy %
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top-1 accuracy %
Paper Title
Repository
HPT++
49.28
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
CoCoOp
48.75
Conditional Prompt Learning for Vision-Language Models
MMRL
49.17
MMRL: Multi-Modal Representation Learning for Vision-Language Models
CoPrompt
49.43
Consistency-guided Prompt Learning for Vision-Language Models
POMP
49.8
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
MaPLe
49.15
MaPLe: Multi-modal Prompt Learning
CLIP
46.15
Learning Transferable Visual Models From Natural Language Supervision
PromptSRC
49.55
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
HPT
49.36
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
0 of 9 row(s) selected.
Previous
Next