HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Prompt-Engineering
Prompt Engineering On Imagenet
Prompt Engineering On Imagenet
Metriken
Harmonic mean
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Harmonic mean
Paper Title
PromptKD
77.62
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
Customized Ensemble
75.49
Beyond Sole Strength: Customized Ensembles for Generalized Vision-Language Models
MMRL
74.45
MMRL: Multi-Modal Representation Learning for Vision-Language Models
CoPrompt
74.33
Consistency-guided Prompt Learning for Vision-Language Models
HPT++
74.24
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
HPT
74.17
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
ProMetaR
74.09
Prompt Learning via Meta-Regularization
MetaPrompt
74.02
Learning Domain Invariant Prompt for Vision-Language Models
DePT
74.02
DePT: Decoupled Prompt Tuning
PromptSRC
74.01
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
RPO
74.00
Read-only Prompt Optimization for Vision-Language Few-shot Learning
MaPLe
73.47
MaPLe: Multi-modal Prompt Learning
CoCoOp
73.10
Conditional Prompt Learning for Vision-Language Models
CLIP
70.22
Learning Transferable Visual Models From Natural Language Supervision
0 of 14 row(s) selected.
Previous
Next
Prompt Engineering On Imagenet | SOTA | HyperAI