HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Prompt Engineering
Prompt Engineering On Food 101
Prompt Engineering On Food 101
Metriken
Harmonic mean
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Harmonic mean
Paper Title
Repository
ProMetaR
91.34
Prompt Learning via Meta-Regularization
HPT++
91.09
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
PromptSRC
91.10
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
HPT
91.01
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
MaPLe
91.38
MaPLe: Multi-modal Prompt Learning
MMRL
91.03
MMRL: Multi-Modal Representation Learning for Vision-Language Models
CoCoOp
90.99
Conditional Prompt Learning for Vision-Language Models
MetaPrompt
91.29
Learning Domain Invariant Prompt for Vision-Language Models
DePT
91.22
DePT: Decoupled Prompt Tuning
-
CoPrompt
91.40
Consistency-guided Prompt Learning for Vision-Language Models
PromptKD
93.05
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
RPO
90.58
Read-only Prompt Optimization for Vision-Language Few-shot Learning
0 of 12 row(s) selected.
Previous
Next