HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Prompt-Engineering
Prompt Engineering On Eurosat
Prompt Engineering On Eurosat
Metriken
Harmonic mean
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Harmonic mean
Paper Title
Repository
PromptSRC
82.32
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
-
CoPrompt
85.84
Consistency-guided Prompt Learning for Vision-Language Models
-
MMRL
87.21
MMRL: Multi-Modal Representation Learning for Vision-Language Models
-
HPT++
87.36
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
-
MaPLe
82.35
MaPLe: Multi-modal Prompt Learning
-
DePT
84.88
DePT: Decoupled Prompt Tuning
-
PromptKD
89.14
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
-
MetaPrompt
83.38
Learning Domain Invariant Prompt for Vision-Language Models
-
CLIP
60.03
Learning Transferable Visual Models From Natural Language Supervision
-
RPO
76.79
Read-only Prompt Optimization for Vision-Language Few-shot Learning
-
CoCoOp
71.21
Conditional Prompt Learning for Vision-Language Models
-
HPT
84.82
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
-
ProMetaR
85.30
Prompt Learning via Meta-Regularization
-
0 of 13 row(s) selected.
Previous
Next
Prompt Engineering On Eurosat | SOTA | HyperAI