HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Prompt Engineering
Prompt Engineering On Dtd
Prompt Engineering On Dtd
Metriken
Harmonic mean
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Harmonic mean
Paper Title
Repository
MetaPrompt
68.35
Learning Domain Invariant Prompt for Vision-Language Models
DePT
71.09
DePT: Decoupled Prompt Tuning
-
CLIP
56.37
Learning Transferable Visual Models From Natural Language Supervision
CoCoOp
64.85
Conditional Prompt Learning for Vision-Language Models
CoPrompt
72.79
Consistency-guided Prompt Learning for Vision-Language Models
RPO
68.61
Read-only Prompt Optimization for Vision-Language Few-shot Learning
PromptKD
77.94
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
MMRL
73.82
MMRL: Multi-Modal Representation Learning for Vision-Language Models
MaPLe
68.16
MaPLe: Multi-modal Prompt Learning
HPT
72.16
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
HPT++
74.23
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
ProMetaR
72.31
Prompt Learning via Meta-Regularization
PromptSRC
71.75
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
0 of 13 row(s) selected.
Previous
Next