HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Prompt-Engineering
Prompt Engineering On Caltech 101
Prompt Engineering On Caltech 101
Metriken
Harmonic mean
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Harmonic mean
Paper Title
PromptKD
97.77
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models
HPT++
96.96
HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling
MMRL
96.68
MMRL: Multi-Modal Representation Learning for Vision-Language Models
HPT
96.65
Learning Hierarchical Prompt with Structured Linguistic Knowledge for Vision-Language Models
CoPrompt
96.55
Consistency-guided Prompt Learning for Vision-Language Models
MetaPrompt
96.32
Learning Domain Invariant Prompt for Vision-Language Models
DePT
96.28
DePT: Decoupled Prompt Tuning
ProMetaR
96.16
Prompt Learning via Meta-Regularization
RPO
96.03
Read-only Prompt Optimization for Vision-Language Few-shot Learning
MaPLe
96.02
MaPLe: Multi-modal Prompt Learning
PromptSRC
96.02
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
CoCoOp
95.84
Conditional Prompt Learning for Vision-Language Models
CLIP
95.40
Learning Transferable Visual Models From Natural Language Supervision
0 of 13 row(s) selected.
Previous
Next
Prompt Engineering On Caltech 101 | SOTA | HyperAI