HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Pedestrian Detection
Pedestrian Detection On Caltech
Pedestrian Detection On Caltech
Metriken
Reasonable Miss Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Reasonable Miss Rate
Paper Title
Repository
FRCNN+FPN-Res50+refined feature map+Crowdhuman
3.46
CrowdHuman: A Benchmark for Detecting Human in a Crowd
OR-CNN + CityPersons dataset
4.1
Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd
-
ALFNet
6.1
Learning Efficient Single-stage Pedestrian Detectors by Asymptotic Localization Fitting
-
F2DNet (extra data)
1.71
F2DNet: Fast Focal Detection Network for Pedestrian Detection
NNNF
16.20
Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry
-
MS-CNN
9.95
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
CSP + CityPersons dataset
3.8
Center and Scale Prediction: Anchor-free Approach for Pedestrian and Face Detection
F-DNN+SS
8.18
Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection
-
Zhang et al. *
5.1
CityPersons: A Diverse Dataset for Pedestrian Detection
RepLoss + CityPersons dataset
4.0
Repulsion Loss: Detecting Pedestrians in a Crowd
RepLoss
5.0
Repulsion Loss: Detecting Pedestrians in a Crowd
TA-CNN
20.9
Pedestrian Detection aided by Deep Learning Semantic Tasks
-
F2DNet
2.2
F2DNet: Fast Focal Detection Network for Pedestrian Detection
LDCF
24.8
Local Decorrelation For Improved Pedestrian Detection
-
AlexNet
23.3
Taking a Deeper Look at Pedestrians
-
FasterRCNN
8.7
Is Faster R-CNN Doing Well for Pedestrian Detection?
-
Zhang et al.
5.8
CityPersons: A Diverse Dataset for Pedestrian Detection
Part-level CNN + saliency and bounding box alignment
12.4
Part-Level Convolutional Neural Networks for Pedestrian Detection Using Saliency and Boundary Box Alignment
RPN+BF
7.3
Is Faster R-CNN Doing Well for Pedestrian Detection?
-
NMS-Loss
2.92
NMS-Loss: Learning with Non-Maximum Suppression for Crowded Pedestrian Detection
0 of 33 row(s) selected.
Previous
Next