HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Fussgängererkennung
Pedestrian Detection On Caltech
Pedestrian Detection On Caltech
Metriken
Reasonable Miss Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Reasonable Miss Rate
Paper Title
LDCF
24.8
Local Decorrelation For Improved Pedestrian Detection
AlexNet
23.3
Taking a Deeper Look at Pedestrians
TA-CNN
20.9
Pedestrian Detection aided by Deep Learning Semantic Tasks
Checkerboards+
17.1
Filtered Channel Features for Pedestrian Detection
NNNF
16.20
Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry
Part-level CNN + saliency and bounding box alignment
12.4
Part-Level Convolutional Neural Networks for Pedestrian Detection Using Saliency and Boundary Box Alignment
CompACT-Deep
11.75
Learning Complexity-Aware Cascades for Deep Pedestrian Detection
MCF
10.40
Learning Multilayer Channel Features for Pedestrian Detection
MS-CNN
9.95
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
SA-FastRCNN
9.68
Scale-aware Fast R-CNN for Pedestrian Detection
FasterRCNN
8.7
Is Faster R-CNN Doing Well for Pedestrian Detection?
F-DNN+SS
8.18
Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection
SDS-RCNN
7.36
Illuminating Pedestrians via Simultaneous Detection & Segmentation
RPN+BF
7.3
Is Faster R-CNN Doing Well for Pedestrian Detection?
TFAN
6.5
Temporal-Context Enhanced Detection of Heavily Occluded Pedestrians
ALFNet
6.1
Learning Efficient Single-stage Pedestrian Detectors by Asymptotic Localization Fitting
Zhang et al.
5.8
CityPersons: A Diverse Dataset for Pedestrian Detection
HyperLearner
5.5
What Can Help Pedestrian Detection?
Zhang et al. *
5.1
CityPersons: A Diverse Dataset for Pedestrian Detection
RepLoss
5.0
Repulsion Loss: Detecting Pedestrians in a Crowd
0 of 33 row(s) selected.
Previous
Next
Pedestrian Detection On Caltech | SOTA | HyperAI