HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Out Of Distribution Detection
Out Of Distribution Detection On Imagenet 1K 3
Out Of Distribution Detection On Imagenet 1K 3
Metriken
AUROC
FPR95
Latency, ms
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUROC
FPR95
Latency, ms
Paper Title
Repository
NNGuide (ResNet50 w/ ReAct)
97.7
11.12
11.10
Nearest Neighbor Guidance for Out-of-Distribution Detection
NNGuide (RegNet)
99.57
1.83
31.00
Nearest Neighbor Guidance for Out-of-Distribution Detection
MCM (CLIP-L)
94.95
28.38
-
Delving into Out-of-Distribution Detection with Vision-Language Representations
GradNorm
-
50.03
-
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
NAC-UE (ResNet-50)
96.52
-
-
Neuron Activation Coverage: Rethinking Out-of-distribution Detection and Generalization
DICE + ReAct (ResNet-50)
96.24
18.64
-
DICE: Leveraging Sparsification for Out-of-Distribution Detection
LINe (ResNet-50)
97.56
12.26
-
LINe: Out-of-Distribution Detection by Leveraging Important Neurons
KNN (ResNet-50 SupCon)
94.72
30.83
-
Out-of-Distribution Detection with Deep Nearest Neighbors
KNN (ResNet-50)
86.2
59.08
-
Out-of-Distribution Detection with Deep Nearest Neighbors
MOOD
86.9
-
-
Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is All You Need
RP+GradNorm
-
43.87
-
Detecting Out-of-distribution Data through In-distribution Class Prior
ReAct (ResNet-50)
91.53
42.40
-
ReAct: Out-of-distribution Detection With Rectified Activations
MOS (BiT-S-R101x1)
98.15
9.28
-
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
GEN
-
68.32
-
GEN: Pushing the Limits of Softmax-Based Out-of-Distribution Detection
ASH-S (ResNet-50)
97.87
11.49
-
Extremely Simple Activation Shaping for Out-of-Distribution Detection
NPOS
96.19
16.58
-
Non-Parametric Outlier Synthesis
MCM (CLIP-B)
94.61
30.91
-
Delving into Out-of-Distribution Detection with Vision-Language Representations
BATS (ResNet-50)
97.67
-
-
Boosting Out-of-distribution Detection with Typical Features
-
Forte
99.67 ± 00.03
0.64 ± 00.06
-
Forte : Finding Outliers with Representation Typicality Estimation
ODIN+UMAP (ResNet-50)
94.71
21.97
-
Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
0 of 27 row(s) selected.
Previous
Next