HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Ausreißererkennung
Out Of Distribution Detection On Imagenet 1K 12
Out Of Distribution Detection On Imagenet 1K 12
Metriken
AUROC
FPR95
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUROC
FPR95
Paper Title
RP+GradNorm
-
70.12
Detecting Out-of-distribution Data through In-distribution Class Prior
DOE
83.54
59.83
Out-of-distribution Detection with Implicit Outlier Transformation
DML
-
54.74
Decoupling MaxLogit for Out-of-Distribution Detection
ODIN+UMAP (ResNet-50)
89.24
40.94
Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
MOS (BiT-S-R101x1)
90.11
39.97
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
MCM (CLIP-L)
91.49
38.17
Delving into Out-of-Distribution Detection with Vision-Language Representations
NPOS
91.22
37.93
Non-Parametric Outlier Synthesis
RankFeat (ResNetv2-101)
92.15
36.8
RankFeat: Rank-1 Feature Removal for Out-of-distribution Detection
DICE + ReAct (ResNet-50)
93.4
27.25
DICE: Leveraging Sparsification for Out-of-Distribution Detection
BATS (ResNet-50)
94.28
27.11
Boosting Out-of-distribution Detection with Typical Features
ASH-S (ResNet-50)
95.12
22.8
Extremely Simple Activation Shaping for Out-of-Distribution Detection
LINe (ResNet-50)
95.03
20.70
LINe: Out-of-Distribution Detection by Leveraging Important Neurons
SCALE (ResNet50)
95.71
20.05
Scaling for Training Time and Post-hoc Out-of-distribution Detection Enhancement
NNGuide (ResNet50 w/ ReAct)
95.45
19.72
Nearest Neighbor Guidance for Out-of-Distribution Detection
NNGuide (RegNet)
95.42
17.97
Nearest Neighbor Guidance for Out-of-Distribution Detection
MOOD
89.1
-
Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is All You Need
0 of 16 row(s) selected.
Previous
Next