HyperAI

Object Detection In Aerial Images On Dota 1

Metriken

mAP

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Modellname
mAP
Paper TitleRepository
EAutoDet77.05%EAutoDet: Efficient Architecture Search for Object Detection-
RSP-ViTAEv2-S-FPN-ORCN77.72%An Empirical Study of Remote Sensing Pretraining
IMP+MTP(InternImage-XL)80.77%MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining
ViT-B + RVSA-ORCN81.01%Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
ViTAE-B + RVSA-ORCN81.24%Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
LSKNet-T81.37%LSKNet: A Foundation Lightweight Backbone for Remote Sensing
ARC81.77%Adaptive Rotated Convolution for Rotated Object Detection
CFC-NET73.50%CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images
DecoupleNet D278.04%DecoupleNet: A Lightweight Backbone Network With Efficient Feature Decoupling for Remote Sensing Visual Tasks
Oriented RepPoints77.63%Oriented RepPoints for Aerial Object Detection
ReDet80.10%ReDet: A Rotation-equivariant Detector for Aerial Object Detection
DLA+S2A-Net76.95%Dynamic Anchor Learning for Arbitrary-Oriented Object Detection
DRN73.23%Dynamic Refinement Network for Oriented and Densely Packed Object Detection
Oriented RCNN80.87%Oriented R-CNN for Object Detection
SCRDet72.61%SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects
APE75.75Adaptive Period Embedding for Representing Oriented Objects in Aerial Images-
LSKNet-S*81.85%LSKNet: A Foundation Lightweight Backbone for Remote Sensing
RoI Transformer69.56%Learning RoI Transformer for Detecting Oriented Objects in Aerial Images
CFA76.67%Beyond Bounding-Box: Convex-Hull Feature Adaptation for Oriented and Densely Packed Object Detection
GWD+R3Det80.23%Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss
0 of 58 row(s) selected.