HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Objekterkennung in Luftbildern
Object Detection In Aerial Images On Dota 1
Object Detection In Aerial Images On Dota 1
Metriken
mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mAP
Paper Title
Strip R-CNN*
82.75%
Strip R-CNN: Large Strip Convolution for Remote Sensing Object Detection
MoCaE
82.62%
MoCaE: Mixture of Calibrated Experts Significantly Improves Object Detection
Strip R-CNN
82.28%
Strip R-CNN: Large Strip Convolution for Remote Sensing Object Detection
Oriented-DETR
82.26%
Projecting Points to Axes: Oriented Object Detection via Point-Axis Representation
STD+HiViT-B
82.24%
Spatial Transform Decoupling for Oriented Object Detection
CDLA-HOP
82.02%
Category-Aware Dynamic Label Assignment with High-Quality Oriented Proposal
LSKNet-S*
81.85%
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
ARC
81.77%
Adaptive Rotated Convolution for Rotated Object Detection
MAE+MTP(ViT-L+RVSA)
81.66%
MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining
LSKNet-S
81.64%
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
LSKNet-T
81.37%
LSKNet: A Foundation Lightweight Backbone for Remote Sensing
ViTAE-B + RVSA-ORCN
81.24%
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
ViT-B + RVSA-ORCN
81.01%
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
Oriented RCNN
80.87%
Oriented R-CNN for Object Detection
IMP+MTP(InternImage-XL)
80.77%
MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining
PP-YOLOE-R-x
80.73%
PP-YOLOE-R: An Efficient Anchor-Free Rotated Object Detector
MAE+MTP(ViT-B+RVSA)
80.67%
MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining
KLD+R3Det
80.63%
Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence
DEA-Net
80.37%
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images
GWD+R3Det
80.23%
Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss
0 of 58 row(s) selected.
Previous
Next
Object Detection In Aerial Images On Dota 1 | SOTA | HyperAI