HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Netzwerkpruning
Network Pruning On Imagenet
Network Pruning On Imagenet
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
MobileNetV1-50% FLOPs
70.7
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
-
ResNet50-2.3 GFLOPs
78.79
Pruning Filters for Efficient ConvNets
-
ResNet50-1G FLOPs
74.2
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
-
ResNet50-1G FLOPs
74.2
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
-
ResNet50-1.5 GFLOPs
78.07
Pruning Filters for Efficient ConvNets
-
TAS-pruned ResNet-50
76.20
Network Pruning via Transformable Architecture Search
-
ResNet50
73.14
AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks
-
ResNet50-2G FLOPs
76.4
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
-
ResNet50-1G FLOPs
76.376
Pruning Filters for Efficient ConvNets
-
SqueezeNet (6-bit Deep Compression)
57.5%
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
-
RegX-1.6G
77.97
Group Fisher Pruning for Practical Network Compression
-
ResNet50-3G FLOPs
77.1
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
-
ResNet50 2.0 GFLOPS
77.70
Knapsack Pruning with Inner Distillation
-
ResNet50 2.5 GFLOPS
78.0
Knapsack Pruning with Inner Distillation
-
ResNet50
75.59
Network Pruning That Matters: A Case Study on Retraining Variants
-
MobileNetV2
73.42
Group Fisher Pruning for Practical Network Compression
-
0 of 16 row(s) selected.
Previous
Next
Network Pruning On Imagenet | SOTA | HyperAI