HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Music Modeling
Music Modeling On Nottingham
Music Modeling On Nottingham
Metriken
NLL
Parameters
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
NLL
Parameters
Paper Title
Repository
Seq-U-Net
2.97
1.7M
Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling
GRU
3.46
-
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
Transformer
3.34
-
R-Transformer: Recurrent Neural Network Enhanced Transformer
TCN
2.783
1.7M
Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling
LSTM
3.29
-
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
R-Transformer
2.37
-
R-Transformer: Recurrent Neural Network Enhanced Transformer
TCN
3.07
-
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
RNN
4.05
-
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
0 of 8 row(s) selected.
Previous
Next