HyperAI

Multi Tissue Nucleus Segmentation On Kumar

Metriken

Dice
Hausdorff Distance (mm)

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameDiceHausdorff Distance (mm)
dense-steerable-filter-cnns-for-exploiting0.82660
roto-translation-equivariant-convolutional0.81453.4
learning-steerable-filters-for-rotation0.79151.0
cia-net-robust-nuclei-instance-segmentation0.81857.7
mask-r-cnn0.76050.9
xy-network-for-nuclear-segmentation-in-multi0.82659.7
learning-steerable-filters-for-rotation0.81854.3
roto-translation-equivariant-convolutional0.81151.9
u-net-convolutional-networks-for-biomedical0.75847.8
rotation-equivariant-vector-field-networks0.80049.9
micro-net-a-unified-model-for-segmentation-of0.79751.9
learning-steerable-filters-for-rotation0.80954.2
rotation-equivariant-vector-field-networks0.80850.7
rotation-equivariant-vector-field-networks0.81351.4
group-equivariant-convolutional-networks0.79349.0
mrl-learning-to-mix-with-attention-and0.843-
fully-convolutional-networks-for-semantic-10.79731.2
learning-steerable-filters-for-rotation0.82055.8