HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Mehrpersonen-Pose-Schätzung
Multi Person Pose Estimation On Coco Test Dev
Multi Person Pose Estimation On Coco Test Dev
Metriken
AP
APL
APM
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AP
APL
APM
Paper Title
SCIO (HRNet-48)
79.2
84.2
74.1
Self-Constrained Inference Optimization on Structural Groups for Human Pose Estimation
HRNet-W48plus
78.7
-
-
AID: Pushing the Performance Boundary of Human Pose Estimation with Information Dropping Augmentation
HRNet-W32
76.2
-
-
AID: Pushing the Performance Boundary of Human Pose Estimation with Information Dropping Augmentation
ResNet50
73.7
-
-
AID: Pushing the Performance Boundary of Human Pose Estimation with Information Dropping Augmentation
HigherHRNet (ScaleNet_P4)
71.6
77.2
67.5
ScaleNAS: One-Shot Learning of Scale-Aware Representations for Visual Recognition
HigherHRNet (HR-Net-48)
70.5
75.8
66.6
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation
SMPR (HR-Net-32)
70.2
77.2
65.9
SMPR: Single-Stage Multi-Person Pose Regression
PersonLab
68.7
75.5
64.1
PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model
Identity Mapping Hourglass
68.1
70.5
66.8
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
SPM
66.9
73.1
62.6
Single-Stage Multi-Person Pose Machines
Supervising Self-Attention
66.5
-
-
Attend to Who You Are: Supervising Self-Attention for Keypoint Detection and Instance-Aware Association
Hourglass-104
65.6
68.8
63.3
Greedy Offset-Guided Keypoint Grouping for Human Pose Estimation
G-RMI
64.9
70.0
62.3
Towards Accurate Multi-person Pose Estimation in the Wild
CMU-Pose
61.8
68.2
57.1
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
RMPE
61.8
67.6
58.6
RMPE: Regional Multi-person Pose Estimation
0 of 15 row(s) selected.
Previous
Next
Multi Person Pose Estimation On Coco Test Dev | SOTA | HyperAI