HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Monokulare Tiefenschätzung
Monocular Depth Estimation On Kitti Eigen
Monocular Depth Estimation On Kitti Eigen
Metriken
absolute relative error
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
absolute relative error
Paper Title
VDA
0.193
Veritatem Dies Aperit- Temporally Consistent Depth Prediction Enabled by a Multi-Task Geometric and Semantic Scene Understanding Approach
GASDA
0.149
Geometry-Aware Symmetric Domain Adaptation for Monocular Depth Estimation
LeReS
0.149
Learning to Recover 3D Scene Shape from a Single Image
CC
0.140
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation
SIW
0.14
Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings
SC-SfMLearner
0.137
Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video
struct2depth
0.135
Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos
SIGNet
0.133
SIGNet: Semantic Instance Aided Unsupervised 3D Geometry Perception
SelfDepthNorm
0.133
Self-supervised Learning for Single View Depth and Surface Normal Estimation
SC-SfMLearner_CS+K
0.128
Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video
3Net
0.126
Learning monocular depth estimation with unsupervised trinocular assumptions
PackNet-SfM
0.12
3D Packing for Self-Supervised Monocular Depth Estimation
SC-Depth (ResNet18)
0.119
Unsupervised Scale-consistent Depth Learning from Video
SemanticAware
0.118
Towards Scene Understanding: Unsupervised Monocular Depth Estimation With Semantic-Aware Representation
SC-Depth (ResNet 50)
0.114
Unsupervised Scale-consistent Depth Learning from Video
LSIM
0.113
Learn Stereo, Infer Mono: Siamese Networks for Self-Supervised, Monocular, Depth Estimation
DNet
0.113
Toward Hierarchical Self-Supervised Monocular Absolute Depth Estimation for Autonomous Driving Applications
DiPE
0.112
DiPE: Deeper into Photometric Errors for Unsupervised Learning of Depth and Ego-motion from Monocular Videos
DeepLabV3+ (F10)
0.110
Single Image Depth Estimation Trained via Depth from Defocus Cues
monodepth2 M
0.106
Digging Into Self-Supervised Monocular Depth Estimation
0 of 79 row(s) selected.
Previous
Next
Monocular Depth Estimation On Kitti Eigen | SOTA | HyperAI