HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Moleküleigenschaftsvorhersage
Molecular Property Prediction On Freesolv
Molecular Property Prediction On Freesolv
Metriken
R2
RMSE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
R2
RMSE
Paper Title
N-GramXGB
-
5.061
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
PretrainGNN
-
2.764
Strategies for Pre-training Graph Neural Networks
N-GramRF
-
2.688
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
GROVER (large)
-
2.272
Self-Supervised Graph Transformer on Large-Scale Molecular Data
GROVER (base)
-
2.176
Self-Supervised Graph Transformer on Large-Scale Molecular Data
D-MPNN
-
2.082
Analyzing Learned Molecular Representations for Property Prediction
ChemRL-GEM
-
1.877
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for Property Prediction
SPMM
-
1.859
Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model
S-CGIB
-
1.648±0.074
Pre-training Graph Neural Networks on Molecules by Using Subgraph-Conditioned Graph Information Bottleneck
Uni-Mol
-
1.620
Uni-Mol: A Universal 3D Molecular Representation Learning Framework
GraphGPS
0.861±0.037
1.462±0.188
Recipe for a General, Powerful, Scalable Graph Transformer
ChemBFN
-
1.418
A Bayesian Flow Network Framework for Chemistry Tasks
SMA
-
1.09
Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning
Graphormer
0.927±0.005
1.065±0.039
Do Transformers Really Perform Bad for Graph Representation?
TokenGT
0.930±0.018
1.038±0.125
Pure Transformers are Powerful Graph Learners
PNA
0.951±0.009
0.870±0.081
Principal Neighbourhood Aggregation for Graph Nets
GCN
0.957±0.009
0.815±0.086
Semi-Supervised Classification with Graph Convolutional Networks
GAT
0.959±0.011
0.791±0.101
Graph Attention Networks
GIN
0.964±0.008
0.744±0.083
How Powerful are Graph Neural Networks?
GATv2
0.970±0.007
0.676±0.081
How Attentive are Graph Attention Networks?
0 of 22 row(s) selected.
Previous
Next