HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Modellkompression
Model Compression On Imagenet
Model Compression On Imagenet
Metriken
Top-1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top-1
Paper Title
ADLIK-MO-ResNet50+W4A4
77.878
Learned Step Size Quantization
ADLIK-MO-ResNet50+W3A4
77.34
Learned Step Size Quantization
ResNet-18 + 4bit-1dim model compression using DKM
70.52
R2 Loss: Range Restriction Loss for Model Compression and Quantization
MobileNet-v1 + 4bit-1dim model compression using DKM
69.63
R2 Loss: Range Restriction Loss for Model Compression and Quantization
ResNet-18 + 2bit-1dim model compression using DKM
68.63
R2 Loss: Range Restriction Loss for Model Compression and Quantization
MobileNet-v1 + 2bit-1dim model compression using DKM
67.62
R2 Loss: Range Restriction Loss for Model Compression and Quantization
ResNet-18 + 4bit-4dim model compression using DKM
66.1
R2 Loss: Range Restriction Loss for Model Compression and Quantization
ResNet-18 + 2bit-2dim model compression using DKM
64.7
R2 Loss: Range Restriction Loss for Model Compression and Quantization
MobileNet-v1 + 4bit-4dim model compression using DKM
61.4
R2 Loss: Range Restriction Loss for Model Compression and Quantization
ResNet-18 + 1bit-1dim model compression using DKM
59.7
R2 Loss: Range Restriction Loss for Model Compression and Quantization
MobileNet-v1 + 2bit-2dim model compression using DKM
53.99
R2 Loss: Range Restriction Loss for Model Compression and Quantization
MobileNet-v1 + 1bit-1dim model compression using DKM
52.58
R2 Loss: Range Restriction Loss for Model Compression and Quantization
0 of 12 row(s) selected.
Previous
Next
Model Compression On Imagenet | SOTA | HyperAI