HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Meme-Klassifikation
Meme Classification On Hateful Memes
Meme Classification On Hateful Memes
Metriken
Accuracy
ROC-AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
ROC-AUC
Paper Title
Repository
LMM-RGCL (Qwen2-VL-7B)
0.821
0.911
Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection
-
Flamingo (few-shot:32)
-
0.700
Flamingo: a Visual Language Model for Few-Shot Learning
-
Vilio
0.695
0.825
Vilio: State-of-the-art Visio-Linguistic Models applied to Hateful Memes
-
CLIP (zero-shot)
-
0.661
Learning Transferable Visual Models From Natural Language Supervision
-
Human
0.847
0.8265
The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes
-
SEER (RegNet10B)
-
0.734
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
-
Ron Zhu
0.732
0.845
Enhance Multimodal Transformer With External Label And In-Domain Pretrain: Hateful Meme Challenge Winning Solution
-
Pro-Cap
0.723
0.809
Pro-Cap: Leveraging a Frozen Vision-Language Model for Hateful Meme Detection
-
PaLI-X-VPD
-
0.892
Visual Program Distillation: Distilling Tools and Programmatic Reasoning into Vision-Language Models
-
Visual BERT COCO
0.695
0.754
The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes
-
Flamingo (fine-tuned)
-
0.866
Flamingo: a Visual Language Model for Few-Shot Learning
-
ISSUES
-
0.855
Mapping Memes to Words for Multimodal Hateful Meme Classification
-
HateDetectron27
0.765
0.811
Detecting Hate Speech in Memes Using Multimodal Deep Learning Approaches: Prize-winning solution to Hateful Memes Challenge
-
RGCL (CLIP)
0.788
0.870
Improving Hateful Meme Detection through Retrieval-Guided Contrastive Learning
-
Hate-CLIPper - Align
-
0.858
Hate-CLIPper: Multimodal Hateful Meme Classification based on Cross-modal Interaction of CLIP Features
-
LMM-RGCL (LLaVA-1.5-7B)
0.809
0.897
Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection
-
LMM-RGCL (Qwen2-VL-2B)
0.791
0.884
Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection
-
0 of 17 row(s) selected.
Previous
Next
Meme Classification On Hateful Memes | SOTA | HyperAI