HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Medizinische Bildsegmentierung
Medical Image Segmentation On Bkai Igh
Medical Image Segmentation On Bkai Igh
Metriken
Average Dice
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average Dice
mIoU
Paper Title
Repository
TGANet
0.9023
0.8409
TGANet: Text-guided attention for improved polyp segmentation
ColonSegNet
0.6881
-
Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning
QTSeg
-
-
QTSeg: A Query Token-Based Dual-Mix Attention Framework with Multi-Level Feature Distribution for Medical Image Segmentation
BlazeNeo
0.78802
-
BlazeNeo: Blazing fast polyp segmentation and neoplasm detection
FocalUNet
0.8021
-
Focal-UNet: UNet-like Focal Modulation for Medical Image Segmentation
NeoUNet
0.80723
-
NeoUNet: Towards accurate colon polyp segmentation and neoplasm detection
-
EMCAD
0.9296
-
EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation
TransResU-Net
0.9154
0.8568
TransResU-Net: Transformer based ResU-Net for Real-Time Colonoscopy Polyp Segmentation
RaBiT
0.94
0.886
RaBiT: An Efficient Transformer using Bidirectional Feature Pyramid Network with Reverse Attention for Colon Polyp Segmentation
0 of 9 row(s) selected.
Previous
Next
Medical Image Segmentation On Bkai Igh | SOTA | HyperAI