HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Medical Image Segmentation
Medical Image Segmentation On Automatic
Medical Image Segmentation On Automatic
Metriken
Avg DSC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Avg DSC
Paper Title
Repository
R50-ViT-CUP
87.57
TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
MERIT-GCASCADE
92.23
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
LHU-Net
92.65
LHU-Net: A Light Hybrid U-Net for Cost-Efficient, High-Performance Volumetric Medical Image Segmentation
TransCASCADE
91.63
Medical Image Segmentation via Cascaded Attention Decoding
PVT-GCASCADE
91.95
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation
SwinUnet
90.00
Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
nnFormer
92.06
nnFormer: Interleaved Transformer for Volumetric Segmentation
-
FCT
93.02
The Fully Convolutional Transformer for Medical Image Segmentation
Interactive AI-SAM gt box
93.89
AI-SAM: Automatic and Interactive Segment Anything Model
R50-AttnUNet
86.75
TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
Automatic AI-SAM
92.06
AI-SAM: Automatic and Interactive Segment Anything Model
TransUNet
90.4
S2S2: Semantic Stacking for Robust Semantic Segmentation in Medical Imaging
FCT
94.26
Adaptive t-vMF Dice Loss for Multi-class Medical Image Segmentation
TransUNet
89.71
TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
MIST
92.56
MIST: Medical Image Segmentation Transformer with Convolutional Attention Mixing (CAM) Decoder
MERIT
92.32
Multi-scale Hierarchical Vision Transformer with Cascaded Attention Decoding for Medical Image Segmentation
EMCAD
92.12
EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation
SegFormer3D
90.96
SegFormer3D: an Efficient Transformer for 3D Medical Image Segmentation
-
MISSFormer
87.9
MISSFormer: An Effective Medical Image Segmentation Transformer
PVT-CASCADE
91.46
Medical Image Segmentation via Cascaded Attention Decoding
0 of 20 row(s) selected.
Previous
Next