HyperAI

Link Property Prediction On Ogbl Biokg

Metriken

Number of params
Test MRR
Validation MRR

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Modellname
Number of params
Test MRR
Validation MRR
Paper TitleRepository
ComplEx-N3-RP1877500000.84940.8497Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations
TransE1876480000.7452 ± 0.00040.7456 ± 0.0003--
ComplEx1876480000.8095 ± 0.00070.8105 ± 0.0001Complex Embeddings for Simple Link Prediction
GFA-NN-0.90110.9011Embedding Knowledge Graphs Attentive to Positional and Centrality Qualities-
DistMult1876480000.8043 ± 0.00030.8055 ± 0.0003Embedding Entities and Relations for Learning and Inference in Knowledge Bases
ComplEx^21876480000.8583 ± 0.00050.8592 ± 0.0004How to Turn Your Knowledge Graph Embeddings into Generative Models
ComplEx-RP (1000dim)1877500000.8492 ± 0.00020.8497 ± 0.0002--
ComplEx^21876480000.8583 ± 0.00050.8592 ± 0.0004--
UniBi1816541700.8550 ± 0.00030.8553 ± 0.0001Prior Bilinear Based Models for Knowledge Graph Completion
RelEns8494271060.9618 ± 0.00020.9627 ± 0.0004Relation-aware Ensemble Learning for Knowledge Graph Embedding
AutoBLM-KGBench1920471040.8536 ± 0.00030.8548 ± 0.0002Bilinear Scoring Function Search for Knowledge Graph Learning
AutoSF938240000.8309 ± 0.00080.8317 ± 0.0007AutoSF: Searching Scoring Functions for Knowledge Graph Embedding
PairRE1877500000.8164 ± 0.00050.8172 ± 0.0005PairRE: Knowledge Graph Embeddings via Paired Relation Vectors
NBFNet734,2090.83170.8318Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction
TripleRE4696300020.8348 ± 0.00070.8360 ± 0.0006--
RotatE1875970000.7989 ± 0.00040.7997 ± 0.0002RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space
0 of 16 row(s) selected.