HyperAI

Link Prediction On Wn18Rr

Metriken

Hits@1
Hits@10
Hits@3
MR
MRR

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameHits@1Hits@10Hits@3MRMRR
dense-an-enhanced-non-abelian-group0.4430.5790.50830520.491
self-attention-presents-low-dimensional0.4540.5580.508-0.491
neural-bellman-ford-networks-a-general-graph0.4970.6660.5736360.551
low-dimensional-hyperbolic-knowledge-graph-10.4490.5860.514-.496
hitter-hierarchical-transformers-for0.4620.5840.516-0.503
canonical-tensor-decomposition-for-knowledge-0.57--0.48
neptune-neural-powered-tucker-network-for0.4550.5570.507-0.491
greenkgc-a-lightweight-knowledge-graph-0.4910.43-0.411
augmenting-and-tuning-knowledge-graph----0.455
logical-entity-representation-in-knowledge0.5930.6820.634-0.622
nscaching-simple-and-efficient-negative-0.5089-53650.4463
modeling-heterogeneous-hierarchies-with0.4530.5790.515-0.496
a-capsule-network-based-embedding-model-for-1-0.56-719.00.415
mocosa-momentum-contrast-for-knowledge-graph0.6240.820.737-0.696
drum-end-to-end-differentiable-rule-mining-on0.4250.5860.513-0.486
palt-parameter-lite-transfer-of-language-0.693-61-
learning-hierarchy-aware-knowledge-graph0.4520.5820.516-0.497
knowledge-graph-embedding-with-linear0.4530.5780.50916440.495
kgrefiner-knowledge-graph-refinement-for-0.57-6830.448
embedding-entities-and-relations-for-learning0.39---0.43
how-does-knowledge-graph-embedding0.4460.5720.50932110.484
unified-interpretation-of-softmax-cross0.4440.5530.496-0.481
autokge-searching-scoring-functions-for-0.567--0.490
from-discrimination-to-generation-knowledge0.2870.5350.403--
hypernetwork-knowledge-graph-embeddings0.4360.5220.47757960.465
kg-bert-bert-for-knowledge-graph-completion-0.524-97-
decompressing-knowledge-graph-representations0.4270.5150.469-0.457
kbgan-adversarial-learning-for-knowledge-0.469--0.215
convolutional-2d-knowledge-graph-embeddings0.4000.5200.440-0.430
kermit-knowledge-graph-completion-of-enhanced0.6290.8320.738-0.700
quaternion-knowledge-graph-embedding0.4380.5820.50823140.488
multi-partition-embedding-interaction-with0.4440.5510.496-0.481
relphormer-relational-graph-transformer-for0.4480.591--0.495
mlmlm-link-prediction-with-mean-likelihood0.43910.6110.541816030.5017
knowledge-graph-embedding-via-graph0.4240.6040.52512700.467
probabilistic-case-based-reasoning-for-open0.430.550.49-0.48
meim-multi-partition-embedding-interaction0.4580.5770.518-0.499
unified-interpretation-of-softmax-cross0.4410.5460.491-0.477
end-to-end-structure-aware-convolutional0.430.540.48-0.47
tucker-tensor-factorization-for-knowledge0.4430.5260.482-0.470
duality-induced-regularizer-for-tensor0.4410.552--0.478
relation-prediction-as-an-auxiliary-training0.4430.5780.505-0.488
rot-pro-modeling-transitivity-by-projection0.3970.5770.482-0.457
rotate-knowledge-graph-embedding-by0.4280.5710.49233400.476
quatde-dynamic-quaternion-embedding-for0.4380.5860.50919770.489
greenkgc-a-lightweight-knowledge-graph0.30.4130.365-0.342
composition-based-multi-relational-graph0.4430.5460.49435330.479
safran-an-interpretable-rule-based-link0.4590.578--0.502
language-models-as-knowledge-embeddings0.5230.7890.671790.619
duality-induced-regularizer-for-tensor0.4550.577--0.498
semantic-triple-encoder-for-fast-open-set0.2430.7090.491510.401
embedding-knowledge-graphs-attentive-to-0.575-33900.486
a-novel-embedding-model-for-knowledge-base-0.525-2554.00.248
simkgc-simple-contrastive-knowledge-graph0.5880.8170.731-0.671
convolutional-2d-knowledge-graph-embeddings0.350.350.35135260.35
m-walk-learning-to-walk-over-graphs-using0.414-0.445-0.437
duality-induced-regularizer-for-tensor0.449---0.491
1906006870.4520.5570.505-0.486
rotate-knowledge-graph-embedding-by0.4170.5520.47929230.462
multi-relational-poincare-graph-embeddings0.4400.5660.495-0.481
orthogonal-relation-transforms-with-graph0.4420.5830.51127150.491
mde-multi-distance-embeddings-for-link-0.560-32190.458
mocokgc-momentum-contrast-entity-encoding-for0.6650.8810.792-0.742
joint-language-semantic-and-structure-0.786-35-
complex-embeddings-for-simple-link-prediction0.4100.510--0.440
translating-embeddings-for-modeling-multi0.42260.5555--0.4659
learning-attention-based-embeddings-for0.3610.5810.4831940.00.44
contextual-parameter-generation-for-knowledge.4405.5612--.4833
predicting-semantic-relations-using-global0.45370.5902--0.4983
adaptive-convolution-for-multi-relational0.4430.5370.489-0.475
self-distillation-with-meta-learning-for-10.4470.5700.504-0.491
lp-bert-multi-task-pre-training-knowledge0.3430.7520.563920.482
interacte-improving-convolution-based0.4300.528-52020.463
kglm-integrating-knowledge-graph-structure-in0.3300.7410.53840.180.467