Link Prediction On Umls
Metriken
Hits@10
MR
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Hits@10 | MR |
---|---|---|
joint-language-semantic-and-structure | 0.994 | 1.39 |
palt-parameter-lite-transfer-of-language | 0.990 | 1.57 |
embedding-entities-and-relations-for-learning | 0.846 | 5.52 |
convolutional-2d-knowledge-graph-embeddings | 0.990 | 1.51 |
semantic-triple-encoder-for-fast-open-set | 0.991 | 1.49 |
complex-embeddings-for-simple-link-prediction | 0.967 | 2.59 |
kglm-integrating-knowledge-graph-structure-in | 0.995 | 1.19 |
kg-bert-bert-for-knowledge-graph-completion | 0.990 | 1.47 |
translating-embeddings-for-modeling-multi | 0.989 | 1.84 |
lp-bert-multi-task-pre-training-knowledge | 1.000 | 1.18 |