HyperAI

Link Prediction On Cora

Metriken

AP
AUC

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAPAUC
rethinking-kernel-methods-for-node93.2%93.50%
neural-bellman-ford-networks-a-general-graph96.2%95.6%
binarized-attributed-network-embedding93.3%93.5%
hyperspherical-variational-auto-encoders94.1%94.1%
variational-graph-normalized-auto-encoders95.8%95.4%
neural-link-prediction-with-walk-pooling-196.0%95.9%
ness-learning-node-embeddings-from-static98.71%98.46%
variational-graph-normalized-auto-encoders95.7%95.6%
adversarially-regularized-graph-autoencoder93.2%92.4%
variational-graph-auto-encoders--
graph-infoclust-leveraging-cluster-level-node93.5%93.7%
pppne-personalized-proximity-preserved93.9%92.5%
multi-task-graph-autoencoders--