HyperAI

Link Prediction On Citeseer

Metriken

AP
AUC

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAPAUC
rethinking-kernel-methods-for-node91.8%90.9%
multi-task-graph-autoencoders--
variational-graph-normalized-auto-encoders97.197
neural-bellman-ford-networks-a-general-graph93.6%92.3%
binarized-attributed-network-embedding-95.59%
graph-infoclust-leveraging-cluster-level-node96.897
hyperspherical-variational-auto-encoders95.294.7
adversarially-regularized-graph-autoencoder9391.9
graphite-iterative-generative-modeling-of95.4%94.1%
neural-link-prediction-with-walk-pooling-196.0495.94
variational-graph-auto-encoders--
ness-learning-node-embeddings-from-static99.599.43
variational-graph-normalized-auto-encoders9796.5