HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Lernen mit verrauschten Etiketten
Learning With Noisy Labels On Cifar 10N 3
Learning With Noisy Labels On Cifar 10N 3
Metriken
Accuracy (mean)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy (mean)
Paper Title
PSSCL
96.49
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
SOP+
95.39
Robust Training under Label Noise by Over-parameterization
ILL
95.13
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
CORES*
94.74
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
ELR+
94.34
Early-Learning Regularization Prevents Memorization of Noisy Labels
GNL
91.83
Partial Label Supervision for Agnostic Generative Noisy Label Learning
ELR
91.41
Early-Learning Regularization Prevents Memorization of Noisy Labels
CAL
90.74
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Co-Teaching
90.15
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Negative-LS
90.13
To Smooth or Not? When Label Smoothing Meets Noisy Labels
JoCoR
90.11
Combating noisy labels by agreement: A joint training method with co-regularization
Divide-Mix
89.97
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Positive-LS
89.82
Does label smoothing mitigate label noise?
CORES
89.79
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
F-div
89.55
When Optimizing $f$-divergence is Robust with Label Noise
Co-Teaching+
89.54
How does Disagreement Help Generalization against Label Corruption?
Peer Loss
88.57
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
VolMinNet
88.19
Provably End-to-end Label-Noise Learning without Anchor Points
T-Revision
87.79
Are Anchor Points Really Indispensable in Label-Noise Learning?
GCE
87.58
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
0 of 23 row(s) selected.
Previous
Next
Learning With Noisy Labels On Cifar 10N 3 | SOTA | HyperAI