HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Lernen mit verrauschten Etiketten
Learning With Noisy Labels On Cifar 10N 3
Learning With Noisy Labels On Cifar 10N 3
Metriken
Accuracy (mean)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy (mean)
Paper Title
Repository
GCE
87.58
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
-
F-div
89.55
When Optimizing $f$-divergence is Robust with Label Noise
-
CAL
90.74
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
-
Backward-T
86.86
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
-
CORES
89.79
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
-
JoCoR
90.11
Combating noisy labels by agreement: A joint training method with co-regularization
-
Positive-LS
89.82
Does label smoothing mitigate label noise?
-
ELR
91.41
Early-Learning Regularization Prevents Memorization of Noisy Labels
-
VolMinNet
88.19
Provably End-to-end Label-Noise Learning without Anchor Points
-
SOP+
95.39
Robust Training under Label Noise by Over-parameterization
-
Co-Teaching
90.15
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
-
Co-Teaching+
89.54
How does Disagreement Help Generalization against Label Corruption?
-
Forward-T
87.04
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
-
PSSCL
96.49
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
GNL
91.83
Partial Label Supervision for Agnostic Generative Noisy Label Learning
-
CORES*
94.74
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
-
ILL
95.13
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
-
CE
85.16
-
-
Negative-LS
90.13
To Smooth or Not? When Label Smoothing Meets Noisy Labels
-
Peer Loss
88.57
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
-
0 of 23 row(s) selected.
Previous
Next
Learning With Noisy Labels On Cifar 10N 3 | SOTA | HyperAI