HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Lernen mit verrauschten Etiketten
Learning With Noisy Labels On Cifar 10N 1
Learning With Noisy Labels On Cifar 10N 1
Metriken
Accuracy (mean)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy (mean)
Paper Title
Repository
Negative-LS
90.29
To Smooth or Not? When Label Smoothing Meets Noisy Labels
-
F-div
89.70
When Optimizing $f$-divergence is Robust with Label Noise
-
VolMinNet
88.30
Provably End-to-end Label-Noise Learning without Anchor Points
-
JoCoR
90.30
Combating noisy labels by agreement: A joint training method with co-regularization
-
GNL
91.97
Partial Label Supervision for Agnostic Generative Noisy Label Learning
-
T-Revision
88.33
Are Anchor Points Really Indispensable in Label-Noise Learning?
-
Backward-T
87.14
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
-
Forward-T
86.88
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
-
PGDF
96.01
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
-
Co-Teaching+
89.70
How does Disagreement Help Generalization against Label Corruption?
-
Peer Loss
89.06
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
-
PSSCL
96.17
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
CORES*
94.45
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
-
Co-Teaching
90.33
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
-
ELR
91.46
Early-Learning Regularization Prevents Memorization of Noisy Labels
-
ELR+
94.43
Early-Learning Regularization Prevents Memorization of Noisy Labels
-
GCE
87.61
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
-
Divide-Mix
90.18
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
-
ILL
94.85
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
-
Positive-LS
89.80
Does label smoothing mitigate label noise?
-
0 of 24 row(s) selected.
Previous
Next
Learning With Noisy Labels On Cifar 10N 1 | SOTA | HyperAI