HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Lernen mit verrauschten Etiketten
Learning With Noisy Labels On Cifar 10N
Learning With Noisy Labels On Cifar 10N
Metriken
Accuracy (mean)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy (mean)
Paper Title
Repository
SOP+
95.61
Robust Training under Label Noise by Over-parameterization
-
ILL
95.47
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
-
CORES*
95.25
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
-
CE
87.77
-
-
CAL
91.97
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
-
Forward-T
88.24
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
-
PGDF
96.11
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
-
Co-Teaching
91.20
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
-
ELR+
94.83
Early-Learning Regularization Prevents Memorization of Noisy Labels
-
GNL
92.57
Partial Label Supervision for Agnostic Generative Noisy Label Learning
-
F-div
91.64
When Optimizing $f$-divergence is Robust with Label Noise
-
ProMix
97.39
ProMix: Combating Label Noise via Maximizing Clean Sample Utility
-
ELR
92.38
Early-Learning Regularization Prevents Memorization of Noisy Labels
-
Backward-T
88.13
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
-
Peer Loss
90.75
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
-
Positive-LS
91.57
Does label smoothing mitigate label noise?
-
GCE
87.85
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
-
T-Revision
88.52
Are Anchor Points Really Indispensable in Label-Noise Learning?
-
JoCoR
91.44
Combating noisy labels by agreement: A joint training method with co-regularization
-
CORES
91.23
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
-
0 of 26 row(s) selected.
Previous
Next
Learning With Noisy Labels On Cifar 10N | SOTA | HyperAI