HyperAI

Learning With Noisy Labels On Cifar 10N

Metriken

Accuracy (mean)

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAccuracy (mean)
robust-training-under-label-noise-by-over95.61
imprecise-label-learning-a-unified-framework95.47
learning-with-instance-dependent-label-noise-195.25
Modell 487.77
clusterability-as-an-alternative-to-anchor91.97
making-deep-neural-networks-robust-to-label88.24
sample-prior-guided-robust-model-learning-to96.11
co-teaching-robust-training-of-deep-neural91.20
early-learning-regularization-prevents94.83
generative-noisy-label-learning-by-implicit92.57
when-optimizing-f-divergence-is-robust-with-191.64
promix-combating-label-noise-via-maximizing97.39
early-learning-regularization-prevents92.38
making-deep-neural-networks-robust-to-label88.13
peer-loss-functions-learning-from-noisy90.75
does-label-smoothing-mitigate-label-noise91.57
generalized-cross-entropy-loss-for-training87.85
19060018988.52
combating-noisy-labels-by-agreement-a-joint91.44
learning-with-instance-dependent-label-noise-191.23
understanding-and-improving-early-stopping94.66
how-does-disagreement-help-generalization90.61
dividemix-learning-with-noisy-labels-as-semi-195.01
psscl-a-progressive-sample-selection96.41
provably-end-to-end-label-noise-learning89.70
understanding-generalized-label-smoothing91.97