HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Lernen mit verrauschten Etiketten
Learning With Noisy Labels On Animal
Learning With Noisy Labels On Animal
Metriken
Accuracy
ImageNet Pretrained
Network
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
ImageNet Pretrained
Network
Paper Title
Jigsaw-ViT
89.0
NO
DeiT-S
Jigsaw-ViT: Learning Jigsaw Puzzles in Vision Transformer
SURE
89.0
NO
Vgg19-BN
SURE: SUrvey REcipes for building reliable and robust deep networks
PSSCL
88.74
NO
Vgg19-BN
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
SSR
88.5
NO
Vgg19-BN
SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise
BtR
88.5
NO
Vgg19-BN
Bootstrapping the Relationship Between Images and Their Clean and Noisy Labels
SPR
86.8
NO
VGG19-BN
Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels
Dynamic Loss
86.5
NO
Vgg19-BN
Dynamic Loss For Robust Learning
C2MT
85.9
NO
Vgg-19-BN
Cross-to-merge training with class balance strategy for learning with noisy labels
GNL
85.9
NO
Vgg-19-BN
Partial Label Supervision for Agnostic Generative Noisy Label Learning
InstanceGM with ConvNeXt
84.7
NO
ConvNeXt
Instance-Dependent Noisy Label Learning via Graphical Modelling
InstanceGM
84.6
NO
Vgg19-BN
Instance-Dependent Noisy Label Learning via Graphical Modelling
Nested+Co-teaching (NCT)
84.1
NO
Vgg19-BN
Compressing Features for Learning with Noisy Labels
PLC
83.4
NO
Vgg19-BN
Learning with Feature-Dependent Label Noise: A Progressive Approach
InstanceGM with ResNet
82.3
NO
ResNet
Instance-Dependent Noisy Label Learning via Graphical Modelling
SELFIE
81.8
NO
Vgg19-BN
SELFIE: Refurbishing Unclean Samples for Robust Deep Learning
Nested Dropout
81.3
NO
Vgg19-BN
Boosting Co-teaching with Compression Regularization for Label Noise
CE + Dropout
81.3
NO
Vgg19-BN
Boosting Co-teaching with Compression Regularization for Label Noise
Cross Entropy
79.4
NO
Vgg19-BN
Learning with Feature-Dependent Label Noise: A Progressive Approach
0 of 18 row(s) selected.
Previous
Next