HyperAI

Jpeg Artifact Correction On Live1 Quality 20 1

Metriken

PSNR
PSNR-B
SSIM

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnamePSNRPSNR-BSSIM
multi-level-wavelet-cnn-for-image-restoration32.0431.830.8989
image-restoration-using-convolutional-auto31.73--
towards-flexible-blind-jpeg-artifacts-removal32.1331.570.889
s-net-a-scalable-convolutional-neural-network31.8331.760.8975
beyond-a-gaussian-denoiser-residual-learning31.59--
residual-dense-network-for-image-restoration32.1-0.8886
compression-artifacts-reduction-by-a-deep31.2931.370.8891
memnet-a-persistent-memory-network-for-image31.8331.740.8970
dpw-sdnet-dual-pixel-wavelet-domain-deep-cnns31.6931.600.8891
hierarchical-information-flow-for-generalized32.31-0.8938
implicit-dual-domain-convolutional-network32.0932.000.9006
quantization-guided-jpeg-artifact-correction31.8631.270.901