HyperAI

Jpeg Artifact Correction On Live1 Quality 10 1

Metriken

PSNR
SSIM

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnamePSNRSSIM
residual-dense-network-for-image-restoration29.70.8252
hierarchical-information-flow-for-generalized29.940.8359
beyond-a-gaussian-denoiser-residual-learning29.19-
image-restoration-using-convolutional-auto29.35-
one-size-fits-all-hypernetwork-for-tunable28.810.82
memnet-a-persistent-memory-network-for-image29.450.8327
quantization-guided-jpeg-artifact-correction29.530.840
multi-level-wavelet-cnn-for-image-restoration29.690.8357
compression-artifacts-reduction-by-a-deep29.110.8235
towards-flexible-blind-jpeg-artifacts-removal29.750.827
dpw-sdnet-dual-pixel-wavelet-domain-deep-cnns29.400.8235
implicit-dual-domain-convolutional-network29.710.838
s-net-a-scalable-convolutional-neural-network29.440.8325