HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Absichtserkennung
Intent Detection On Snips
Intent Detection On Snips
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
CTRAN
99.42
CTRAN: CNN-Transformer-based Network for Natural Language Understanding
Stack-Propagation (+BERT)
99.0
A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding
JointBERT-CAE
98.3
CAE: Mechanism to Diminish the Class Imbalanced in SLU Slot Filling Task
AGIF
98.1
AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling
LIDSNet
98.0
LIDSNet: A Lightweight on-device Intent Detection model using Deep Siamese Network
Stack-Propagation
98.00
A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding
SF-ID (BLSTM) network
97.43
A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling
SF-ID
97.43
A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling
Capsule-NLU
97.3
Joint Slot Filling and Intent Detection via Capsule Neural Networks
Slot-Gated BLSTM with Attension
97.00
Slot-Gated Modeling for Joint Slot Filling and Intent Prediction
0 of 10 row(s) selected.
Previous
Next
Intent Detection On Snips | SOTA | HyperAI