HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Intent Detection
Intent Detection On Snips
Intent Detection On Snips
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
AGIF
98.1
AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling
LIDSNet
98.0
LIDSNet: A Lightweight on-device Intent Detection model using Deep Siamese Network
-
SF-ID (BLSTM) network
97.43
A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling
Stack-Propagation (+BERT)
99.0
A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding
Capsule-NLU
97.3
Joint Slot Filling and Intent Detection via Capsule Neural Networks
Stack-Propagation
98.00
A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding
JointBERT-CAE
98.3
CAE: Mechanism to Diminish the Class Imbalanced in SLU Slot Filling Task
SF-ID
97.43
A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling
Slot-Gated BLSTM with Attension
97.00
Slot-Gated Modeling for Joint Slot Filling and Intent Prediction
CTRAN
99.42
CTRAN: CNN-Transformer-based Network for Natural Language Understanding
0 of 10 row(s) selected.
Previous
Next