HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Absichtserkennung
Intent Detection On Mixsnips
Intent Detection On Mixsnips
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
SSRAN
98.4
A Scope Sensitive and Result Attentive Model for Multi-Intent Spoken Language Understanding
DGIF
97.8
A Dynamic Graph Interactive Framework with Label-Semantic Injection for Spoken Language Understanding
BiSLU
97.8
Joint Multiple Intent Detection and Slot Filling with Supervised Contrastive Learning and Self-Distillation
Co-guiding Net
97.7
Co-guiding Net: Achieving Mutual Guidances between Multiple Intent Detection and Slot Filling via Heterogeneous Semantics-Label Graphs
TFMN
97.7
A Transformer-based Threshold-Free Framework for Multi-Intent NLU
TFMN (PACL)
97.4
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
MISCA
97.3
MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention
SLIM
97.2
SLIM: Explicit Slot-Intent Mapping with BERT for Joint Multi-Intent Detection and Slot Filling
Uni-MIS
97.2
Uni-MIS: United Multiple Intent Spoken Language Understanding via Multi-View Intent-Slot Interaction
SLIM (PACL)
96.9
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
UGEN
96.9
Incorporating Instructional Prompts into a Unified Generative Framework for Joint Multiple Intent Detection and Slot Filling
RoBERTa (PACL)
96.5
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
AGIF
96.5
AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling
Topic Information
96.3
Exploiting Topic Information for Joint Intent Detection and Slot Filling
GL-GIN
95.6
GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling
Global Intent-Slot Co-occurence
95.5
Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-occurrence
0 of 16 row(s) selected.
Previous
Next
Intent Detection On Mixsnips | SOTA | HyperAI