HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Intent Detection
Intent Detection On Mixsnips
Intent Detection On Mixsnips
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
GL-GIN
95.6
GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling
DGIF
97.8
A Dynamic Graph Interactive Framework with Label-Semantic Injection for Spoken Language Understanding
-
SLIM
97.2
SLIM: Explicit Slot-Intent Mapping with BERT for Joint Multi-Intent Detection and Slot Filling
RoBERTa (PACL)
96.5
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
AGIF
96.5
AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling
Co-guiding Net
97.7
Co-guiding Net: Achieving Mutual Guidances between Multiple Intent Detection and Slot Filling via Heterogeneous Semantics-Label Graphs
BiSLU
97.8
Joint Multiple Intent Detection and Slot Filling with Supervised Contrastive Learning and Self-Distillation
SSRAN
98.4
A Scope Sensitive and Result Attentive Model for Multi-Intent Spoken Language Understanding
-
SLIM (PACL)
96.9
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
Global Intent-Slot Co-occurence
95.5
Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-occurrence
Uni-MIS
97.2
Uni-MIS: United Multiple Intent Spoken Language Understanding via Multi-View Intent-Slot Interaction
MISCA
97.3
MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention
Topic Information
96.3
Exploiting Topic Information for Joint Intent Detection and Slot Filling
-
TFMN (PACL)
97.4
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
UGEN
96.9
Incorporating Instructional Prompts into a Unified Generative Framework for Joint Multiple Intent Detection and Slot Filling
TFMN
97.7
A Transformer-based Threshold-Free Framework for Multi-Intent NLU
-
0 of 16 row(s) selected.
Previous
Next