HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Image Retrieval
Image Retrieval On Rparis Medium
Image Retrieval On Rparis Medium
Metriken
mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mAP
Paper Title
Repository
HED-N-GAN
76.6
Dark Side Augmentation: Generating Diverse Night Examples for Metric Learning
HOW
81.6
Learning and aggregating deep local descriptors for instance-level recognition
FIRe
85.3
Learning Super-Features for Image Retrieval
R – [O] –CroW
70.4
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
R–R-MAC
78.9
Particular object retrieval with integral max-pooling of CNN activations
HesAff–rSIFT–SMK*
59.0
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Token
89.34
Learning Token-based Representation for Image Retrieval
DELF–ASMK*+SP
76.9
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–ASMK*
61.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELF–HQE+SP
84.0
Large-Scale Image Retrieval with Attentive Deep Local Features
Dino
75.3
Emerging Properties in Self-Supervised Vision Transformers
HesAff–rSIFT–HQE+SP
70.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELG+ α QE reranking + RRT reranking
88.5
Instance-level Image Retrieval using Reranking Transformers
HesAff–rSIFT–SMK*+SP
59.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–GeM
77.2
Fine-tuning CNN Image Retrieval with No Human Annotation
ResNet101+ArcFace GLDv2-train-clean
84.9
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
HesAff–rSIFT–HQE
68.9
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–VLAD
43.6
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R – [O] –SPoC
69.2
Aggregating Deep Convolutional Features for Image Retrieval
R – [O] –MAC
66.2
Particular object retrieval with integral max-pooling of CNN activations
0 of 23 row(s) selected.
Previous
Next