HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Bildsuche
Image Retrieval On Rparis Medium
Image Retrieval On Rparis Medium
Metriken
mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mAP
Paper Title
AMES
94.9
AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-level Retrieval
Hypergraph propagation
92.6
Hypergraph Propagation and Community Selection for Objects Retrieval
Token
89.34
Learning Token-based Representation for Image Retrieval
DELG+ α QE reranking + RRT reranking
88.5
Instance-level Image Retrieval using Reranking Transformers
FIRe
85.3
Learning Super-Features for Image Retrieval
ResNet101+ArcFace GLDv2-train-clean
84.9
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
DELF–HQE+SP
84.0
Large-Scale Image Retrieval with Attentive Deep Local Features
HOW
81.6
Learning and aggregating deep local descriptors for instance-level recognition
R–R-MAC
78.9
Particular object retrieval with integral max-pooling of CNN activations
R–GeM
77.2
Fine-tuning CNN Image Retrieval with No Human Annotation
DELF–ASMK*+SP
76.9
Large-Scale Image Retrieval with Attentive Deep Local Features
HED-N-GAN
76.6
Dark Side Augmentation: Generating Diverse Night Examples for Metric Learning
Dino
75.3
Emerging Properties in Self-Supervised Vision Transformers
R – [O] –CroW
70.4
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
HesAff–rSIFT–HQE+SP
70.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R – [O] –SPoC
69.2
Aggregating Deep Convolutional Features for Image Retrieval
HesAff–rSIFT–HQE
68.9
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R – [O] –MAC
66.2
Particular object retrieval with integral max-pooling of CNN activations
HesAff–rSIFT–ASMK*+SP
61.4
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–ASMK*
61.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
0 of 23 row(s) selected.
Previous
Next
Image Retrieval On Rparis Medium | SOTA | HyperAI