HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Bildsuche
Image Retrieval On Rparis Hard
Image Retrieval On Rparis Hard
Metriken
mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mAP
Paper Title
Repository
R–GeM
56.3
Fine-tuning CNN Image Retrieval with No Human Annotation
-
FIRe
70.0
Learning Super-Features for Image Retrieval
-
HOW
62.4
Learning and aggregating deep local descriptors for instance-level recognition
-
HesAff–rSIFT–VLAD
17.5
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
-
Token
78.56
Learning Token-based Representation for Image Retrieval
-
DELG+ α QE reranking + RRT reranking
77.7
Instance-level Image Retrieval using Reranking Transformers
HesAff–rSIFT–HQE
44.7
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
-
Hypergraph propagation
83.3
Hypergraph Propagation and Community Selection for Objects Retrieval
Dino
51.6
Emerging Properties in Self-Supervised Vision Transformers
-
DELF–ASMK*+SP
55.4
Large-Scale Image Retrieval with Attentive Deep Local Features
-
HesAff–rSIFT–SMK*+SP
31.3
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
-
R – [O] –SPoC
44.7
Aggregating Local Deep Features for Image Retrieval
-
HesAff–rSIFT–SMK*
31.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
-
SuperGlobal
86.7
Global Features are All You Need for Image Retrieval and Reranking
-
R – [O] –CroW
47.2
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
-
R–R-MAC
59.4
Particular object retrieval with integral max-pooling of CNN activations
-
DELF–HQE+SP
69.3
Large-Scale Image Retrieval with Attentive Deep Local Features
-
HesAff–rSIFT–ASMK*
34.5
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
-
HesAff–rSIFT–ASMK*+SP
35.0
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
-
R – [O] –MAC
44.1
Particular object retrieval with integral max-pooling of CNN activations
-
0 of 23 row(s) selected.
Previous
Next