HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Bildsuche
Image Retrieval On Roxford Medium
Image Retrieval On Roxford Medium
Metriken
mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mAP
Paper Title
AMES
90.7
AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-level Retrieval
Hypergraph propagation+Community selection
88.4
Hypergraph Propagation and Community Selection for Objects Retrieval
Token
82.28
Learning Token-based Representation for Image Retrieval
FIRe
81.8
Learning Super-Features for Image Retrieval
DELG+ α QE reranking + RRT reranking
80.4
Instance-level Image Retrieval using Reranking Transformers
HOW
79.4
Learning and aggregating deep local descriptors for instance-level recognition
ResNet101+ArcFace GLDv2-train-clean
74.2
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
DELF–HQE+SP
73.4
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–HQE+SP
71.3
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELF–ASMK*+SP
67.8
Large-Scale Image Retrieval with Attentive Deep Local Features
HED-N-GAN
66.3
Dark Side Augmentation: Generating Diverse Night Examples for Metric Learning
HesAff–rSIFT–HQE
66.3
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–GeM
64.7
Fine-tuning CNN Image Retrieval with No Human Annotation
R–R-MAC
60.9
End-to-end Learning of Deep Visual Representations for Image Retrieval
HesAff–rSIFT–ASMK*+SP
60.6
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–ASMK*
60.4
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*+SP
59.8
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*
59.4
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Dino
51.5
Emerging Properties in Self-Supervised Vision Transformers
R – [O] –CroW
42.4
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
0 of 23 row(s) selected.
Previous
Next
Image Retrieval On Roxford Medium | SOTA | HyperAI