HyperAI

Image Retrieval On Roxford Hard

Metriken

mAP

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Modellname
mAP
Paper TitleRepository
DELF–ASMK*+SP43.1 Large-Scale Image Retrieval with Attentive Deep Local Features
R – [O] –MAC 18.0 Particular object retrieval with integral max-pooling of CNN activations
DELG+ α QE reranking+ RRT reranking64Instance-level Image Retrieval using Reranking Transformers
Hypergraph propagation+community selection73Hypergraph Propagation and Community Selection for Objects Retrieval
Token66.57Learning Token-based Representation for Image Retrieval
HesAff–rSIFT–VLAD13.2Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*+SP35.8 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELF–HQE+SP50.3Large-Scale Image Retrieval with Attentive Deep Local Features
R–GeM38.5Fine-tuning CNN Image Retrieval with No Human Annotation
HesAff–rSIFT–ASMK*36.4 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Dino24.3Emerging Properties in Self-Supervised Vision Transformers
FIRe61.2Learning Super-Features for Image Retrieval
HesAff–rSIFT–HQE+SP 49.7Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–ASMK*+SP36.7Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
ResNet101+ArcFace GLDv2-train-clean51.6Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
R–R-MAC32.4 Particular object retrieval with integral max-pooling of CNN activations
HesAff–rSIFT–SMK*35.4 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HOW56.9Learning and aggregating deep local descriptors for instance-level recognition
R – [O] –CroW 13.3 Cross-dimensional Weighting for Aggregated Deep Convolutional Features
HesAff–rSIFT–HQE 41.3Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
0 of 23 row(s) selected.