HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Bildsuche
Image Retrieval On Roxford Hard
Image Retrieval On Roxford Hard
Metriken
mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mAP
Paper Title
SuperGlobal
80.2
Global Features are All You Need for Image Retrieval and Reranking
AMES
80
AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-level Retrieval
Hypergraph propagation+community selection
73
Hypergraph Propagation and Community Selection for Objects Retrieval
Token
66.57
Learning Token-based Representation for Image Retrieval
DELG+ α QE reranking+ RRT reranking
64
Instance-level Image Retrieval using Reranking Transformers
FIRe
61.2
Learning Super-Features for Image Retrieval
HOW
56.9
Learning and aggregating deep local descriptors for instance-level recognition
ResNet101+ArcFace GLDv2-train-clean
51.6
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
DELF–HQE+SP
50.3
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–HQE+SP
49.7
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELF–ASMK*+SP
43.1
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–HQE
41.3
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–GeM
38.5
Fine-tuning CNN Image Retrieval with No Human Annotation
HesAff–rSIFT–ASMK*+SP
36.7
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–ASMK*
36.4
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*+SP
35.8
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–SMK*
35.4
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–R-MAC
32.4
Particular object retrieval with integral max-pooling of CNN activations
Dino
24.3
Emerging Properties in Self-Supervised Vision Transformers
R – [O] –MAC
18.0
Particular object retrieval with integral max-pooling of CNN activations
0 of 23 row(s) selected.
Previous
Next