Image Generation On Lsun Churches 256 X 256
Metriken
FID
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | FID |
---|---|
unleashing-transformers-parallel-token | 4.07 |
wavelet-diffusion-models-are-fast-and | 5.06 |
tackling-the-generative-learning-trilemma-1 | 5.25 |
adversarial-generation-of-continuous-images | 4.04 |
diffusion-gan-training-gans-with-diffusion | 1.85 |
swagan-a-style-based-wavelet-driven | 4.97 |
truncated-diffusion-probabilistic-models | 3.98 |
bellman-optimal-step-size-straightening-of | - |
flow-matching-in-latent-space | 5.54 |
Modell 10 | 2.66 |
a-style-based-generator-architecture-for | 4.21 |
denoising-diffusion-probabilistic-models | 7.89 |
diffusion-gan-training-gans-with-diffusion | 3.17 |
pseudo-numerical-methods-for-diffusion-models-1 | 8.69 |
gotta-go-fast-when-generating-data-with-score | 26.46 |
clr-gan-improving-gans-stability-and-quality | 3.43 |
ensembling-off-the-shelf-models-for-gan | 1.72 |
analyzing-and-improving-the-image-quality-of | 3.86 |
polarity-sampling-quality-and-diversity | 3.92 |
image-generators-with-conditionally | 2.92 |
stylenat-giving-each-head-a-new-perspective | 3.4 |
transgan-two-transformers-can-make-one-strong | 8.94 |
styleswin-transformer-based-gan-for-high-1 | 2.95 |
projected-gans-converge-faster | 1.59 |
gotta-go-fast-when-generating-data-with-score | 26.46 |
progressive-growing-of-gans-for-improved | 6.42 |
msg-gan-multi-scale-gradients-gan-for-more | 5.2 |