Image Generation On Celeba 64X64
Metriken
FID
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | FID |
---|---|
high-resolution-deep-convolutional-generative | 8.44 |
Modell 2 | 1.77 |
densely-connected-normalizing-flows | - |
escaping-from-collapsing-modes-in-a | 34.136 |
consistency-regularization-for-variational | - |
efficient-vdvae-less-is-more | - |
Modell 7 | 6.03 |
soft-diffusion-score-matching-for-general | 1.85 |
learning-stackable-and-skippable-lego-bricks | 2.09 |
blackout-diffusion-generative-diffusion | 3.22 |
diffusion-gan-training-gans-with-diffusion | 1.69 |
enhancing-gans-with-mmd-neural-architecture | 1.92 |
compensation-sampling-for-improved | 2.11 |
enhancing-gans-with-mmd-neural-architecture | 2.03 |
score-matching-model-for-unbounded-data-score-1 | 2.9 |
optimal-budgeted-rejection-sampling-for | 3.74 |
scire-solver-efficient-sampling-of-diffusion | 2.02 |
refining-generative-process-with | 1.34 |
clr-gan-improving-gans-stability-and-quality | 13.63 |
flow-contrastive-estimation-of-energy-based | 12.21 |
feature-alignment-for-approximated | 128.35 |
efficient-generative-adversarial-networks | 1.81 |
input-perturbation-reduces-exposure-bias-in | 1.27 |
peergan-generative-adversarial-networks-with | 13.95 |
score-matching-model-for-unbounded-data-score-1 | - |
maximum-likelihood-training-of-implicit | 2.54 |
diffusevae-efficient-controllable-and-high | 3.97 |
continuous-time-functional-diffusion | 35 |
score-matching-model-for-unbounded-data-score-1 | 1.9 |
continuous-time-functional-diffusion | 11 |
maximum-likelihood-training-of-implicit | 1.75 |
Modell 32 | 22.45 |
transgan-two-transformers-can-make-one-strong | 12.23 |
compensation-sampling-for-improved | 1.38 |
pseudo-numerical-methods-for-diffusion-models-1 | 2.71 |
learning-energy-based-models-by-diffusion-1 | 5.98 |
ncp-vae-variational-autoencoders-with-noise-1 | 5.25 |
probabilistic-auto-encoder | 49.2 |
class-continuous-conditional-generative | 5.6 |