HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Bildgenerierung
Image Generation On Celeba 256X256
Image Generation On Celeba 256X256
Metriken
bpd
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
bpd
Paper Title
Repository
SPN Menick and Kalchbrenner (2019)
0.61
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
-
LSGM
0.70
Score-based Generative Modeling in Latent Space
-
StyleSwin
-
StyleSwin: Transformer-based GAN for High-resolution Image Generation
-
NCP-VAE
-
A Contrastive Learning Approach for Training Variational Autoencoder Priors
-
MaCow (Unf)
0.95
MaCow: Masked Convolutional Generative Flow
-
Efficient-VDVAE
0.51
Efficient-VDVAE: Less is more
-
HiT-B
-
Improved Transformer for High-Resolution GANs
-
StyleALAE
-
Adversarial Latent Autoencoders
-
Glow (Kingma and Dhariwal, 2018)
1.03
Glow: Generative Flow with Invertible 1x1 Convolutions
-
Residual Flow
0.992
Residual Flows for Invertible Generative Modeling
-
Locally Masked PixelCNN
0.74
Locally Masked Convolution for Autoregressive Models
-
GLF+perceptual loss (ours)
-
Generative Latent Flow
-
MSP
-
Latent Space Factorisation and Manipulation via Matrix Subspace Projection
-
VQGAN
-
Taming Transformers for High-Resolution Image Synthesis
-
ANF Huang et al. (2020)
0.72
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
-
NVAE w/ flow
0.70
NVAE: A Deep Hierarchical Variational Autoencoder
-
MaCow (Var)
0.67
MaCow: Masked Convolutional Generative Flow
-
0 of 17 row(s) selected.
Previous
Next